Tag Archives: high bearing

China wholesaler High Quality CZPT Rg25 Rg30 Rg35 Rg45 Linear Guide Rail Linear Block Slider Bearing wholesaler

Product Description

 High Quality Hiwin RG25 RG30 RG35 RG45 Linear Xihu (West Lake) Dis. Rail Linear Block Slider Bearing

Specification:

Product Name

Linear CZPT

Material

Bearing steel, Gcr15

Precision

C, H, P

Width

15mm-45mm

Length

100mm-4000mm

Advantage

High precision, high speed, long life, high reliability, low noise

Packing

Plastic bag + wooden box or according to customers’ demands

Packaging & Shipping

Packaging Details:  

1)Sample order packing by paper carton for saving freight charge; 

                                 
2)bulk order sent by sea will be packed by film and wooden carton.

                                 
3) as customer’s requirements.

Company Profile

Company Information:
   

     ZheJiang Sair Mechanical Xihu (West Lake) Dis. Co., Ltd is located at Xihu (West Lake) Dis. industrial zone Xihu (West Lake) Dis. County which is the beautiful Xihu (West Lake) Dis.
Water City and the famous painting and calligraphy village.The south is national road 308, the west is the national highway 105,
the north is HangZhou-HangZhou highway, so the position is very superior. It is 1 of the biggest linear manufacturers in China.

Certifications

 

 

FAQ

1. Q: How about the quality of your product?

    A: 100% inspection during production. 

       Our products are certified to ISO9001-2008 international quality standards.

2. Q: What’s the delivery time? 

    A: For custom order, within 2000 meters, 

        Production time is 15days after confirmed every details.

3. Q: What’s your packing?

    A: Our Normal packing is bulking in PE bag, and then into plywood Cartons. 

        We also can pack products according to your requirement.

4. Q: What about the warranty? 

    A: We are very confident in our products, 

        and we pack them very well to make sure the goods in well protection.

5.Q: Could you send me your catalogue and price list?

   A: As we have more than hundreds of products,

      it is really too hard to send all of catalogue and price list for you. 

      Please inform us the style you interested, we can offer the pricelist for your reference.

6.Q:There are a lot of companies which export bearings, why do you choose us?

  A: As we are a genuine linear CZPT supplier since 2011.and we are really factory, you need not pay the profit for middlemen.
so we can offer you the lowest and competitive price .

 

                                         Thanks for your valuable time !    

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Workshop Crane, CNC Machine Parts
Material: Gcr15 Bearing Steel
Structure: Linear Guide Rail and Block
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Signs of Wear or Damage in Linear Bearings and Maintenance

Identifying signs of wear or damage in linear bearings is essential for maintaining their performance and preventing costly failures. Here are common signs of wear and damage and how to address them:

  • 1. Increased Friction:

If you notice increased resistance during linear motion, it could indicate that the bearing components are wearing out. This can lead to reduced efficiency and accuracy.

  • Solution: Regular Lubrication:

Ensure proper lubrication of the bearings to minimize friction and prevent premature wear. Follow manufacturer recommendations for lubrication intervals and types.

  • 2. Uneven Movement:

If the linear motion becomes uneven, jerky, or experiences sudden stops, it may be due to damaged bearing components.

  • Solution: Inspection and Replacement:

Inspect the bearings and associated components for any signs of damage, such as dents or cracks. Replace any damaged parts to restore smooth motion.

  • 3. Abnormal Noise:

Unusual noises during linear motion, such as grinding or clicking sounds, can indicate friction and wear within the bearings.

  • Solution: Lubrication and Inspection:

Lubricate the bearings as recommended and inspect for any foreign particles or debris that might be causing the noise. Clean and replace components if necessary.

  • 4. Increased Play or Clearance:

If there is noticeable play or excessive clearance in the linear system, it can affect precision and lead to inaccuracies.

  • Solution: Adjustment or Replacement:

Check for loose bolts, misalignment, or worn components causing the play. Make necessary adjustments or replace worn parts to restore proper fit and function.

  • 5. Reduced Performance:

If your linear system is no longer achieving the desired accuracy or performance, it could be due to worn bearings.

  • Solution: Maintenance and Replacement:

Regularly perform maintenance tasks, such as cleaning, lubrication, and inspection. If performance does not improve, consider replacing the bearings with new ones.

  • 6. Visible Damage:

Any visible signs of physical damage, such as deformation, corrosion, or cracks, require immediate attention.

  • Solution: Replacement:

If the damage is severe, replace the damaged bearings promptly to avoid further issues.

Regular maintenance practices, including proper lubrication, cleaning, and inspection, are crucial for preventing wear and damage in linear bearings. Addressing any signs of wear early can extend the lifespan of the bearings and ensure consistent performance in various applications.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China wholesaler High Quality CZPT Rg25 Rg30 Rg35 Rg45 Linear Guide Rail Linear Block Slider Bearing   wholesalerChina wholesaler High Quality CZPT Rg25 Rg30 Rg35 Rg45 Linear Guide Rail Linear Block Slider Bearing   wholesaler
editor by CX 2024-05-16

China high quality Lm Lme Lmb Series Linear Bearing Lm3uu 6uu 8uu Lm10uu Lm12uu 3D Printer Linear Bearings manufacturer

Product Description

 

Product Description

LM LME LMB series linear bearing LM3UU 6UU 8UU LM10UU LM12UU 3D printer Linear Bearings

Material

Bearing Steel,Stainless Steel

Retainer

Steel/Resin

Quality standard

ISO9001:2015,CE certificate,RoHS and reach compliance

Efficiency

>90%

Surface Treatment

Available

 Packing

Carton+Plastic bag + Wooden box or according to customers’ demands

 

Product Show

Product Parameters

Company Profile

Founded in year of 2005,ALM originally called HangZhou XIHU (WEST LAKE) DIS. BALL SCREW FACTORY.Over the last 2 decades,ALM has grown fast and has 4 production workshops for ball screw,lead screw,linear motor,linear actuator,linear guideways and related CNC machining parts for automation industry.Factory over 15000 square meters,129 employees.Over 30 technical engineers with more than 20 years’ experience in linear motion filed.ALM factory is equipped with 15 automated production line.Products are 100% inspected before shipping.ALM has obtained ISO9001,IATF16949,CE,RoHS certificate. 0ver 25 distributors all over the world.
 

 

Exhibition

 

Certifications

 

Customer Visit

 

 

FAQ

1.Why can ALM be your better option for linear motion components?
(1)Nearly 20 years of rich manufacturing experience;
 

(2)We understand both electrical and mechanical issues. Can recommend good engineering design.
 

(3)Quality is guaranteed, We inspect everything, so you won’t receive product that doesn’t meet specifications. For some parts, we stock for the customer, You never have to wait.

(4)Easy to pay and can be trusted, We always respond to questions.

(5)We work on your time zone-You no need work through dinner and at night. Above all, our professional sales and after-service team ensure high efficiency communication to allow you high work efficiency and keep a good mood everyday.

2.When can I get the quotation?
We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price, please call us or tell us in
your email so that we will regard your inquiry priority.

3.About shipping and payment:
Shipping
Sample order: We have DHL, FedEx, UPS VIP account with discount. So you can get favorable shipping freight.
Bulk order: We have freight forwarder to ship by air, by train or by sea. You can also arrange shipping through your own shipping agent.

Payment
LC,T/T,D/P, PayPal, Western Union, Money Gram

4.How is quality ensured?
All our processes strictly adhere to ISO9001:2015 procedures. Combining advanced equipment, from production to delivery, we have strict quality control. Our company has strong technical support and has cultivated a group of managers who are familiar with product quality, good at modern concept of management. Our production concept is “Quality has to be caused, not controlled.”
 

5.How to custom-made (OEM/ODM)?

If you have a new product drawing or a sample, please send to us, we’ll make our production drawing and customize it as per your requirement. We can also provide our professional advices to make your design more realized and maximize the performance. So,If you didn’t find the ideal product from our website, please email us, your inquiry will get fast response.
 

6.What’s your Delivery Time?

Standard items: Ready in stock

Customized items:7-20days

For urgent case, We can make the delivery ASAP with guaranteed quality.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Corrosion Resistant, High Speed
Function: Linear Motion
Flange Shape: Square/Round
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Design Principles and Functionalities of Linear Bearings

Linear bearings are designed with specific principles to facilitate controlled linear motion along a single axis. These design principles contribute to their functionalities, making them essential components in various applications:

  • Rolling Elements:

Linear bearings typically feature rolling elements, such as balls or rollers, that move along a track or rail. These rolling elements reduce friction and enable smooth linear motion.

  • Guiding Mechanism:

Linear bearings incorporate a guiding mechanism to constrain the motion to a single axis. This guiding mechanism ensures that the linear bearing moves precisely along the desired path.

  • Load Distribution:

The design of linear bearings allows for effective distribution of loads, both in the radial and axial directions. This load distribution ensures stability and prevents excessive stress on individual components.

  • Rail or Track:

Linear bearings typically run along a rail or track that provides a smooth and accurate path for the rolling elements. The rail is designed to resist wear and maintain its precision over time.

  • Cage or Carriage:

Linear bearings use a cage or carriage to house the rolling elements and maintain their proper spacing. This arrangement ensures even load distribution and smooth movement.

  • Sealing and Lubrication:

Linear bearings often incorporate sealing mechanisms to protect the rolling elements from contaminants and to retain lubrication. Proper lubrication ensures smooth motion and extends the bearing’s lifespan.

  • Mounting Options:

Linear bearings are designed to be mounted in various ways, depending on the application’s requirements. Mounting options include flange-mounted, base-mounted, or end-supported configurations.

  • Adjustability:

Many linear bearings are designed with provisions for adjustment, allowing users to fine-tune the preload or clearance to optimize performance and minimize play.

  • Materials:

Linear bearings are constructed from materials that offer high wear resistance, durability, and corrosion resistance. Common materials include steel, stainless steel, and various engineering plastics.

  • Accessories:

Accessories such as end caps, seals, and lubrication systems can enhance the functionality and lifespan of linear bearings by providing protection and ensuring proper maintenance.

Functionalities of linear bearings include providing precise linear motion, guiding components along a defined path, minimizing friction, distributing loads, and maintaining stability. The design principles ensure reliable operation and make linear bearings indispensable in applications requiring controlled and accurate linear motion.

China high quality Lm Lme Lmb Series Linear Bearing Lm3uu 6uu 8uu Lm10uu Lm12uu 3D Printer Linear Bearings   manufacturerChina high quality Lm Lme Lmb Series Linear Bearing Lm3uu 6uu 8uu Lm10uu Lm12uu 3D Printer Linear Bearings   manufacturer
editor by CX 2024-05-15

China Professional High Quality China Factory Lmkm16luu Square Flange Linear Ball Bearing with high quality

Product Description

SM3 SM4 SM5 SM6 SM8 SM10 SM12 SM13 SM16 SM20 SM25 SM30 SM35 SM40 SM50 SM60 SM80 SM100 SM120 SM150 SM3G SM4G SM5G SM6G SM8G SM10G SM12G SM13G SM16G SM20G SM25G SM30G SM35G SM40G SM50G SM60G SM80G SMS3 SMS4 SMS5 SMS6 SMS8 SMS10 SMS12 SMS13 SMS16 SMS20 SMS25 SMS30 SMS35 SMS40 SMS50 SMS60 SMS80 SMS3G SMS4G SMS5G SMS6G SMS8G SMS10G SMS12G SMS13G SMS16G SMS20G SMS25G SMS30G SMS35G SMS40G SMS50G SMS60G SMS80G SM12-AJ SM13-AJ SM16-AJ SM20-AJ SM25-AJ SM30-AJ SM35-AJ SM40-AJ SM50-AJ SM60-AJ SM80-AJ SM100-AJ SM120-AJ SM150-AJ SM6G-AJ SM8G-AJ SM10G-AJ SM12G-AJ SM13G-AJ SM16G-AJ SM20G-AJ SM25G-AJ SM30G-AJ SM35G-AJ SM40G-AJ SM50G-AJ SM60G-AJ SM80G-AJ SMS12-AJ SMS13-AJ SMS16-AJ SMS20-AJ SMS25-AJ SMS30-AJ SMS35-AJ SMS40-AJ SMS50-AJ SMS60-AJ SMS6G-AJ SMS8G-AJ SMS10G-AJ SMS12G-AJ SMS13G-AJ SMS16G-AJ SMS20G-AJ SMS25G-AJ SMS30G-AJ SMS35G-AJ SMS40G-AJ SMS50G-AJ SMS60G-AJ SM12-OP SM13-OP SM16-OP SM20-OP SM25-OP SM30-OP SM35-OP SM40-OP SM50-OP SM60-OP SM80-OP SM100-OP SM120-OP SM150-OP SM10G-OP SM12G-OP SM13G-OP SM16G-OP SM20G-OP SM25G-OP SM30G-OP SM35G-OP SM40G-OP SM50G-OP SM60G-OP SM80G-OP SMS12-OP SMS13-OP SMS16-OP SMS20-OP SMS25-OP SMS30-OP SMS35-OP SMS40-OP SMS50-OP SMS60-OP SMS10G-OP SMS12G-OP SMS13G-OP SMS16G-OP SMS20G-OP SMS25G-OP SMS30G-OP SMS35G-OP SMS40G-OP SMS50G-OP SMS60G-OP SM6G-LUU SM8G-LUU SM10G-LUU SM12G-LUU SM13G-LUU SM16G-LUU SM20G-LUU SM25G-LUU SM30G-LUU SM3W SM4W SM5W SM6W SM8W SM10W SM12W SM13W SM16W SM20W SM25W SM30W SM35W SM40W SM50W SM60W SM3GW SM4GW SM5GW SM6GW SM8GW SM10GW SM12GW SM13GW SM16GW SM20GW SM25GW SM30GW SM35GW SM40GW SM50GW SM60GW SMS3W SMS4W SMS5W SMS6W SMS8W SMS10W SMS12W SMS13W SMS16W SMS20W SMS25W SMS30W SMS35W SMS40W SMS50W SMS60W SMS3GW SMS4GW SMS5GW SMS6GW SMS8GW SMS10GW SMS12GW SMS13GW SMS16GW SMS20GW SMS25GW SMS30GW SMS35GW SMS40GW SMS50GW SMS60GW SMF6 SMF8 SMF10 SMF12 SMF13 SMF16 SMF20 SMF25 SMF30 SMF35 SMF40 SMF50 SMF60 SMF80 SMF100 SMF6G SMF8G SMF10G SMF12G SMF13G SMF16G SMF20G SMF25G SMF30G SMF35G SMF40G SMF50G SMF60G SMSF6 SMSF8 SMSF10 SMSF12 SMSF13 SMSF16 SMSF20 SMSF25 SMSF30 SMSF35 SMSF40 SMSF50 SMSF60 SMSF6G SMSF8G SMSF10G SMSF12G SMSF13G SMSF16G SMSF20G SMSF25G SMSF30G SMSF35G SMSF40G SMSF50G SMSF60G SMK6 SMK8 SMK10 SMK12 SMK13 SMK16 SMK20 SMK25 SMK30 SMK35 SMK40 SMK50 SMK60 SMK80 SMK100 SMK6G SMK8G SMK10G SMK12G SMK13G SMK16G SMK20G SMK25G SMK30G SMK40G SMK50G SMK60G SMSK6 SMSK8 SMSK10 SMSK12 SMSK13 SMSK16 SMSK20 SMSK25 SMSK30 SMSK35 SMSK40 SMSK50 SMSK60 SMSK6G SMSK8G SMSK10G SMSK12G SMSK13G SMSK16G SMSK20G SMSK25G SMSK30G SMSK35G SMSK40G SMSK50G SMSK60G SMT6UU SMT8UU SMT10UU SMT12UU SMT13UU SMT16UU SMT20UU SMT25UU SMT30UU SMT6GUU SMT8GUU SMT10GUU SMT12GUU SMT13GUU SMT16GUU SMT20GUU SMT25GUU SMT30GUU SMST6UU SMST8UU SMST10UU SMST12UU SMST13UU SMST16UU SMST20UU SMST25UU SMST30UU SMST6GUU SMST8GUU SMST10GUU SMST12GUU SMST13GUU SMST16GUU SMST20GUU SMST25GUU SMST30GUU SMF6UU-E SMF8UU-E SMF10UU-E SMF12UU-E SMF13UU-E SMF16UU-E SMF20UU-E SMF25UU-E SMF30UU-E SMF35UU-E SMF40UU-E SMF50UU-E SMF60UU-E SMF6GUU-E SMF8GUU-E SMF10GUU-E SMF12GUU-E SMF13GUU-E SMF16GUU-E SMF20GUU-E SMF25GUU-E SMF30GUU-E SMF35GUU-E SMF40GUU-E SMF50GUU-E SMF60GUU-E SMSF6UU-E SMSF8UU-E SMSF10UU-E SMSF12UU-E SMSF13UU-E SMSF16UU-E SMSF20UU-E SMSF25UU-E SMSF30UU-E SMSF6GUU-E SMSF8GUU-E SMSF10GUU-E SMSF12GUU-E SMSF13GUU-E SMSF16GUU-E SMSF20GUU-E SMSF25GUU-E SMSF30GUU-E SMK6UU-E SMK8UU-E SMK10UU-E SMK12UU-E SMK13UU-E SMK16UU-E SMK20UU-E SMK25UU-E SMK30UU-E SMK35UU-E SMK40UU-E SMK50UU-E SMK60UU-E SMK6GUU-E SMK8GUU-E SMK10GUU-E SMK12GUU-E SMK13GUU-E SMK16GUU-E SMK20GUU-E SMK25GUU-E SMK30GUU-E SMK35GUU-E SMK40GUU-E SMK50GUU-E SMK60GUU-E SMSK6UU-E SMSK8UU-E SMSK10UU-E SMSK12UU-E SMSK13UU-E SMSK16UU-E SMS20KUU-E SMSK25UU-E SMSK30UU-E SMSK6GUU-E SMSK8GUU-E SMSK10GUU-E SMSK12GUU-E SMSK13GUU-E SMSK16GUU-E SMSK20GUU-E SMSK25GUU-E /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Structure: Rod End
Material: Stainless Steel
Load Direction: Radial Spherical Plain Bearing
Add Lubricant: Self-lubricating
Outer Structure: Outer Ring of Single-Slit
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China Professional High Quality China Factory Lmkm16luu Square Flange Linear Ball Bearing   with high qualityChina Professional High Quality China Factory Lmkm16luu Square Flange Linear Ball Bearing   with high quality
editor by CX 2024-05-14

China Best Sales Ssu16opn Linear Ball Bearing High Seed Bushing Bearing double row ball bearing

Product Description

Linear Bushing Bearing 
SSU16OPN

Product Feature & Application

Key attributes

Industry-specific attributes

Type

Linear bearing

 

Precision Rating

P2

 

Seals Type

ZZ

 

Other attributes

Applicable Industries

Machinery Repair Shops, Retail

 

Place of Origin

ZheJiang , China

 

Model Number

SSU16OPN

 

Material

Bearing steel

 

Application

Assembly machine

 

Package

Original package

 

Product name

SSU16OPN

 

Brand

CZPT or other

 

Weight

0.467kg

 

Packaging and delivery

Packaging Details

1. Industrial Package: kraft paper + cartons + wooden case pallets
2. Industrial packing: plastic tube + cartons + wooden case pallets
3. Industrial packing: Kraft paper + plastic + PE film + wooden case pallets
4. According to your requirements

 

Package Type:

A. Plastic tubes Pack + Carton + Wooden Pallet
B. Roll Pack + Carton + Wooden Pallet
C. Individual Box +Plastic bag+ Carton + Wooden Pallet

 

attribute-list

Supply Ability

10000 Piece/Pieces per Month

 

Lead time

Quantity (pieces) 1 – 1000                  > 1000
Lead time (days) 7-10 To be negotiated

 

Detailed Photos

Packaging & Shipping

After Sales Service

FAQ

Why our bearing is better than other?
Material
We usually use bearing steel (GCr15), but many manufacturers only use softer carbon steel materials, so our bearings have higher hardness and longer service life.

Heat treatment
We have our own heat treatment plant and do not need to be outsourced. We use a slower speed and more stable temperature to effectively control the steel and increase the toughness and life of the steel.
Other small-scale bearing companies usually need to outsource. Many outsourcing factories only strengthen the hardness of the bearing surface due to cost factors, but the hardness inside is not enough, which is the reason why many bad bearings are easy to crack.

Precision
Our bearings can be controlled at a height accuracy of 0~-0.004mm, fast speed and smoothness.

Multiple grinding process
We grind the bearing many times, but others may grind it only once, so the chamfer of our bearing is very smooth.

In conclusion
We use high-quality materials and multiple grinding processes, so our bearings have the characteristics of high speed, low noise,high precision and long life.

Quality guarantee
we give our customers 1 year quality warrantee for the bearings
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: High Speed
Function: Super
Flange Shape: Circular
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China Best Sales Ssu16opn Linear Ball Bearing High Seed Bushing Bearing   double row ball bearingChina Best Sales Ssu16opn Linear Ball Bearing High Seed Bushing Bearing   double row ball bearing
editor by CX 2024-05-08

China high quality Chrome Steel 8X25mm Cylindrical Roller for CNC Linear Guides Bearing bearing example

Product Description

 

Product Description

 

Name Needle Roller Pin
Model Needle Rollers
Cylindrical Rollers
Spherical Rollers
Material Stainless steel  
AISI304/302/316/316L/420/440/440C
Certificate ISO9001:2015
IATF16949:2016
Chrome steel
AISI52100 /Gcr15 /100Cr6 /SUJ-2
Standard ISO3096 / DIN5402-3 Precision G2/G3/G5
Type NRB, NRA, ZB OEM According to customer’s drawing
Description Needle Rollers for bearings is a roller with a cylindrical roller bearings, relative to its diameter, both the thin and long rollers. this is called needle roller.despite its smaller cross-section, still has a higher load bearing capacity, therefore, especially suitable for the radial space-constrained occasions.
Features Super Precision Needle Rollers are designed specifically to handle large radial loads in high-speed spindle applications that demand high running accuracy (runout) of bearing-spindle arrangements.
Application Bearing, Linear motion guidance system, Automotive, and so on.
Package As customers’ requirement
Delivery Time According to the order quantity

Roller size

φ 0.8 x 6.8   φ 3 x 17.8 φ 5 x 14 φ 7 x 12 φ 9 x 14 φ 10 x 38 φ 14 x 14 φ 23 x 23
φ 1 x 5.8   φ 3 x 19.8 φ 5 x 16 φ 7 x 20 φ 9 x 15 φ 10 x 40 φ 14 x 16 φ 24 x 24
φ 2 × 7.8  φ 3 x 21.8 φ 5 x 18 φ 7 x 28 φ 9 x 18 φ 10 x 45 φ 14 x 20 φ 24 x 36
φ 2 x 9.8  φ 3 x 23.8  φ 5 x 20 φ 7 x 35 φ 9 x 21 φ 10 x 50 φ 14 x 25 φ 25 x 25
φ 2 x 10.8 φ 3 x 25.8  φ 5 x 22 φ 7 x 70 φ 9 x 26 φ 10 x 56 φ 14 x 33 φ 25 x 36
φ 2 x11.8  φ 3 x 27.8   φ 5 x 24 φ 8 x 8 φ 9 x 30 φ 10 x 90 φ 14 x 37 φ 26 x 26
φ 2 x 13.8 φ 4 x 6.8   φ 5 x 28 φ 8 x 10 φ 9 x 50 φ 10 x 110 φ 14 x 50 φ 26 x 40
φ 2 x15.8 φ 4 x 7.8   φ 6 x 6  φ 8 x 14 φ 9 x 21 φ 11 x 11 φ 14 x 60 φ 27 x 27
φ 2 x 17.8 φ 4 x 9.8 φ 6 x 8  φ 8 x 15 φ 9 x 26 φ 11 x 12 φ 14 x 80 φ 28 x 28
φ 2 x 19.8  φ 4 x 10.8 φ 6 x 9  φ 8 x 16 φ 9 x 30 φ 11 x 15 φ 15 x 15 φ 28 x 29
φ 2.5 x 9.8  φ 4 x 11.8 φ 6 x 10  φ 8 x 18 φ 9 x 50 φ 11 x 24 φ 15 x 16 φ 30 x 30
φ 2.5 x 10.8 φ 4 x 13.8 φ 6 x 12  φ 8 x 20 φ 9 x 55 φ 11 x 26 φ 15 x 20 φ 30 x 32
φ 2.5 x 11.8 φ 4 x 15.8 φ 6 x 14 φ 8 x 24 φ 9 x 70 φ 11 x 70 φ 15 x 25 φ 34 x 34
φ 2.5 x 13.8 φ 4 x 17.8 φ 6 x 15 φ 8 x 25 φ 10 x 10 φ 12 x 12 φ 15 x 30 φ 35 x 65
φ 2.5 x15.8  φ 4 x 19.8   φ 6 x 16 φ 8 x 30 φ 10 x 12 φ 12 x 16 φ 15 x 80 φ 36 x 38
φ 2..5 x 17.8  φ 4 x 21.8 φ 6 x 17 φ 8 x 35 φ 10 x 14 φ 12 x 18 φ 16 x 16 φ 36 x 50
φ 2.5 x 19.8 φ 4 x 23.8 φ 6 x 18 φ 8 x 40 φ 10 x 15 φ 12 x 20 φ 16 x 24 φ 40 x 40
φ 2.5 x 21.8 φ 4 x 25.8 φ 6 x 20 φ 8 x 45 φ 10 x 18 φ 12 x 24 φ 17 x 17 φ 42 x 42
φ 2..5 x 17.8  φ 4 x 27.8 φ 6 x 21 φ 8 x 48 φ 10 x 20 φ 12 x 25 φ 18 x 18 φ 45 x 45
φ 2.5 x 19.8   φ 4 x 29.8 φ 6 x 24 φ 8 x 50 φ 10 x 22 φ 12 x 27 φ 18 x 26 φ 50 x 50
φ 3 x 7.8 φ 5 x 5  φ 6 x 25 φ 8 x 60 φ 10 x 24 φ 12 x 30 φ 19 x 19 φ 52 x 52
φ 3 x 8.8   φ 5 x 5   φ 6 x 29 φ 8 x 70 φ 10 x 25 φ 12 x 50 φ 20 x 20 φ 60 x 60
φ 3 x 9.8 φ 5 x 7 φ 6 x 35 φ 8 x 80 φ 10 x 26 φ 13 x 13 φ 20 x 24 φ 70 x 70
φ 3 x 10.8 φ 5 x 8 φ 7 x 7 φ 8 x 90 φ 10 x 28 φ 13 x 20 φ 20 x 30  
φ 3 x 11.8  φ 5 x 9 φ 7 x 9 φ 9 x 9 φ 10 x 35 φ 13 x 26 φ 21 x 21  
φ 3 x 13.8 φ 5 x 10 φ 7 x 10 φ 9 x 10 φ 10 x 36 φ 13 x 33 φ 22 x 22  
φ 3 x15.8 φ 5 x 12 φ 7 x 12 φ 9 x 14 φ 10 x 38 φ 13 x 36 φ 22 x 34  

Detailed Photos

Please contact us for more details.
                          /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Diameter: 2.55- 60 mm
Length: 4.8- 72 mm
Quality: ISO9001:2015
Samples: Free
Rolling Body: Roller Bearings
The Number of Rows: Multi-Column
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China high quality Chrome Steel 8X25mm Cylindrical Roller for CNC Linear Guides Bearing   bearing exampleChina high quality Chrome Steel 8X25mm Cylindrical Roller for CNC Linear Guides Bearing   bearing example
editor by CX 2024-05-03

China wholesaler CZPT Series High Quality Linear Bearing Lm50uu All Models for Textile Machinery bearing block

Product Description

 

Company Profile

UP GOLD Automation Technology Co., LTD., independent brand, NYZ and UP. The main products are linear CZPT rail, slider, ball screw, linear optical shaft, linear bearing, machine tool spindle special P4 high precision bearings and accessories, with advanced production equipment and testing instruments to ensure the accuracy of each product. Precision products will provide higher value to the equipment. The company promises to sell each product, warranty period of 24 months, 24 hours after-sales service. Provide professional OEM cooperation model. At the same time, the company agents international first-line brands HIWIN, TBI, NSK,THK. Sufficient resources to ensure every customer needs.

Our Advantages

*Two-year warranty, replace instead of repair.
*12 Months Warranty
*Fast Delivery
*24 hours on line service
*Professional Team
 

Product Description

Linear bearings are widely used in electronic equipment, tensile testing machine and digital 3D coordinate measuring equipment, and multi axis machine, punching machine, tool grinding machine, automatic cutting machine, printer, card sorting machine, food packaging machine industry machinery sliding parts.
 

Product Name
 
LBS50UU Bearing 50*75*100mm Linear Ball Bearing For Precision Machine Tool 
Model Number
 
LMF6UU 
Size
 
6*12*19mm
Feature
 

1.High performance

2.High rigidity

3.High power
4.Durability

  5.Easy maintenance

Precision
 
High Precision
Material
 
Chrome Steel GCr15
 
Delivery Time
 
1) 1-5 Workdays for Samples or in Stock
2) 10-30 Working Days for Ordering

Customer Comment

Packaging & Shipping

Bearing packaging mode
01 Industrial packaging
Plastic tube + Carton + Pallet
02 Commercial packaging
Plastic bag + Kraft paper+ Carton+ Pallet
03 Original packing+ pallet

 

Mode Of Transportation

Air freight
Less than 45 KGS,we will send by express.
(Door to Door,Convenient)

Land transportation
Between 45- 150 KGS, we will send by air transport.
(Fastest and safest, but expensive)

Railway
More than 150 KGS,we will send by sea.

Shipping
According to the requirement of customer.

FAQ

Q: What is the producing process?
A: Production process including raw material cutting, machine processing,grinding, accessories cleaning, assemble, cleaning, oil coating,cover pressing, testing, package.
Q: How to control the products quality?
A: Combining advanced equipment and strict management, we provide high standard and quality bearings for our customers all over the world.
Q: What is the transportation?
A: If small quantity, we suggest to send by express, such as DHL, UPS,TNT FEDEX. If large amount, by air or sea shipping.
Q: How about the shipping charge?
A: We will be free of domestic shipping charge from your freight forwarder in China.
Q: Can you provide OEM service?
A: Yes, we provide OEM service. Which means size, quantity, design,packing solution, etc will depend on your requests; and your logo will be customized on our products.
Q: Could you tell me the delivery time of your goods?
A: Generally it is 3-5 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to the quantity.
Q: What about the packaging of your products?
A: Normally we use standard commercial package, we also have our own brand packing or customized package as per customers’ requests.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Vacuum, Magnetically, Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: Oval
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China wholesaler CZPT Series High Quality Linear Bearing Lm50uu All Models for Textile Machinery   bearing blockChina wholesaler CZPT Series High Quality Linear Bearing Lm50uu All Models for Textile Machinery   bearing block
editor by CX 2024-05-02

China high quality Factory Directly Sales Linear Bearing Standard Model Motion Linear Bearing manufacturer

Product Description

Company Introduction:

UP GOLD Automation Technology Co., LTD., independent brand, NYZ and UP. The main products are linear CZPT rail, slider, ball screw, linear optical shaft, linear bearing, machine tool spindle special P4 high precision bearings and accessories, with advanced production equipment and testing instruments to ensure the accuracy of each product. Precision products will provide higher value to the equipment. The company promises to sell each product, warranty period of 24 months, 24 hours after-sales service. Provide professional OEM cooperation model. At the same time, the company agents international first-line brands HIWIN, TBI, NSK,THK. Sufficient resources to ensure every customer needs.

Product Display:
 

 

 

 
 

 

 Products Description:

 

Product Name Linear Bearing LMK10ML
Feature 1. High quality
2. Corrosion resistance
3. High performance
4. Interchangeability
5. Easy maintenance
Precision High Precision
Material Chrome Steel GCr15
Delivery Time 1) 1-5 Workdays for Samples or in Stock
2) 10-30 Working Days for Ordering

Mode Of Transportation:

 
Product Packaging:

 

 
 

  

FAQ:
 

Q: What is the producing process?
A: Production process including raw material cutting, machine processing,grinding, accessories cleaning, assemble, cleaning, oil coating,cover pressing, testing, package.
Q: How to control the products quality?
A: Combining advanced equipment and strict management, we provide high standard and quality bearings for our customers all over the world.
Q: What is the transportation?
A: If small quantity, we suggest to send by express, such as DHL, UPS,TNT FEDEX. If large amount, by air or sea shipping.
Q: How about the shipping charge?
A: We will be free of domestic shipping charge from your freight forwarder in China.
Q: Can you provide OEM service?
A: Yes, we provide OEM service. Which means size, quantity, design,packing solution, etc will depend on your requests; and your logo will be customized on our products.
Q: Could you tell me the delivery time of your goods?
A: Generally it is 3-5 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to the quantity.
Q: What about the packaging of your products?
A: Normally we use standard commercial package, we also have our own brand packing or customized package as per customers’ requests.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial Equipment
Material: Steel
Structure: Packing Machine
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China high quality Factory Directly Sales Linear Bearing Standard Model Motion Linear Bearing   manufacturerChina high quality Factory Directly Sales Linear Bearing Standard Model Motion Linear Bearing   manufacturer
editor by CX 2024-04-29

China high quality Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing/Pillow Block/Thin Section/Engine Bearing Rnu 2304 carrier bearing

Product Description

Single row cylindrical roller bearings usually only bear radial force. Compared with ball bearings of the same size, the radial bearing capacity is increased by 1.5-3 times, with good rigidity and impact resistance. It is especially suitable for rigid supported shafts, short shafts, shafts with axial displacement caused by thermal elongation, and machine accessories requiring separate bearings for installation and disassembly. It is mainly used for large motors, machine tool spindles, front and rear engine support shafts, train and bus trunk shaft support, diesel engine crankshaft, automobile and tractor gearbox, etc.

Designation Size dynamic static Reference speed Limiting speed
d[mm] D[mm] B[mm] C[kN] C0[kN] [r/min] [r/min]
NU 2209 ECJ 45 85 23 85 81.5 9 000 9 500
NU 2209 ECP 45 85 23 85 81.5 9 000 9 500
NU 2209 ECPH 45 85 23 85 81.5 9 000 9 500
NU 2309 ECML 45 100 36 160 153 7 500 13 000
NU 2309 ECP 45 100 36 160 153 7 500 8 500
NU 309 ECJ 45 100 25 112 100 7 500 8 500
NU 309 ECM 45 100 25 112 100 7 500 8 500
NU 309 ECML 45 100 25 112 100 7 500 13 000
NU 309 ECP 45 100 25 112 100 7 500 8 500
NU 309 ECPH 45 100 25 112 100 7 500 8 500
NUP 209 ECJ 45 85 19 69.5 64 9 000 9 500
NUP 209 ECM 45 85 19 69.5 64 9 000 9 500
NUP 209 ECML 45 85 19 69.5 64 9 000 1 5000
NUP 209 ECP 45 85 19 69.5 64 9 000 9 500
NUP 209 ECPH 45 85 19 69.5 64 9 000 9 500
NUP 2209 ECP 45 85 23 85 81.5 9 000 9 500
NUP 2309 ECML 45 100 36 160 153 7 500 13 000
NUP 2309 ECP 45 100 36 160 153 7 500 8 500
NUP 309 ECJ 45 100 25 112 100 7 500 8 500
NUP 309 ECML 45 100 25 106 91.5 7 500 13 000
NUP 309 ECNP 45 100 25 112 100 7 500 8 500
NUP 309 ECP 45 100 25 112 100 7 500 8 500
N 210 ECP 50 90 20 73.5 69.5 8 500 9 000
N 310 ECP 50 110 27 127 112 6 700 8 000
NJ 210 ECJ 50 90 20 73.5 69.5 8 500 9 000
NJ 210 ECM 50 90 20 73.5 69.5 8 500 9 000
NJ 210 ECML 50 90 20 73.5 69.5 8 500 14 000
NJ 210 ECP 50 90 20 73.5 69.5 8 500 9 000
NJ 210 ECPH 50 90 20 73.5 69.5 8 500 9 000
NJ 2210 ECJ 50 90 23 90 88 8 500 9 000

About us
ZheJiang REET BEARING.CO.,LTD is a professional bearing manufacturer and exporter.
We have a wealth of technical.All producing processes are finished in our manufactory. As an ISO9001:2000 certified manufacturer,we will solve various problems in application and use of our bearings. 
Our company is an authorized distributor of FAG, INA, CZPT and other world brand bearings.Our company has the right to self-export bearings and launches its own brand RTB.
Our bearing had been exported to more than 20 countries worldwide and are warmly welcomed.
We’re looking forward to your order.
FAQ

1.Is the company a production factory or a trading company?
ZheJiang REET BEARING CO.,LTD is a manufacturing enterprise focusing on bearings and integrating research, production and sales.

2.How many the MOQ of your company?
Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

3.Does the company accept OEM or customized bearings?
In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

4.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

5.What are the company’s delivery terms?
We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Samples:
US$ 6/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Factors to Consider When Selecting a Linear Bearing

Choosing the right linear bearing for a specific application involves considering several critical factors to ensure optimal performance and longevity:

  • Load Requirements:

Determine the magnitude and direction of the loads the linear bearing will experience. Consider both static and dynamic loads to select a bearing with an appropriate load capacity.

  • Precision and Accuracy:

For applications requiring precise positioning, choose linear bearings with high precision and low backlash. Factors like repeatability and positional accuracy are crucial.

  • Speed and Acceleration:

Consider the speed and acceleration at which the linear bearing will operate. Higher speeds may require bearings with lower friction and better heat dissipation.

  • Environmental Conditions:

Assess the environmental factors such as temperature, humidity, and exposure to contaminants. Choose linear bearings with suitable materials and seals to withstand the conditions.

  • Space Constraints:

Take into account the available space for mounting the linear bearing. Some applications may have limited space, necessitating compact and lightweight bearing options.

  • Maintenance Requirements:

Consider the maintenance needs of the bearing. Bearings with self-lubricating properties or easy access for lubrication can reduce maintenance frequency.

  • Mounting and Configuration:

Choose a linear bearing that can be easily mounted and integrated into your system’s design. Consider factors like mounting orientation and available mounting surfaces.

  • Life Expectancy:

Estimate the expected lifespan of the linear bearing based on the application’s requirements. Select a bearing with a suitable design life to prevent premature failures.

  • Cost and Budget:

Balance the desired performance with the available budget. Opt for linear bearings that provide the necessary features without exceeding cost limitations.

  • Accessories and Add-ons:

Consider any additional accessories or add-ons, such as seals, lubrication systems, or end caps, that can enhance the bearing’s performance and protection.

  • Manufacturer and Supplier:

Choose reputable manufacturers and suppliers that offer reliable products and good customer support. Quality assurance and technical assistance are essential.

Overall, a comprehensive assessment of these factors will help you select the most suitable linear bearing for your specific application, ensuring optimal performance, longevity, and cost-effectiveness.

China high quality Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing/Pillow Block/Thin Section/Engine Bearing Rnu 2304   carrier bearingChina high quality Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing/Pillow Block/Thin Section/Engine Bearing Rnu 2304   carrier bearing
editor by CX 2024-04-22

China OEM High Quality Linear Ball Bearing Lm Series Linear Flange Lm20uu/Lmk20uu/Lmf20uu ball bearing

Product Description

SMSK30GUU-E SMT6UU-E SMT8UU-E SMT10UU-E SMT12UU-E SMT13UU-E SMT16UU-E SMT20UU-E SMT25UU-E SMT30UU-E SMT6GUU-E SMT8GUU-E SMT10GUU-E SMT12GUU-E SMT13GUU-E SMT16GUU-E SMT20GUU-E SMT25GUU-E SMT30GUU-E SMST6UU-E SMST8UU-E SMST10UU-E SMST12UU-E SMST13UU-E SMST16UU-E SMST20UU-E SMST25UU-E SMST30UU-E SMST6GUU-E SMST8GUU-E SMST10GUU-E SMST12GUU-E SMST13GUU-E SMST16GUU-E SMST20GUU-E SMST25GUU-E SMST30GUU-E SMK6G-LUU SMK8G-LUU SMK10G-LUU SMK12G-LUU SMK13G-LUU SMK16G-LUU SMK20G-LUU SMK25G-LUU SMK30G-LUU SMF6W SMF8W SMF10W SMF12W SMF13W SMF16W SMF20W SMF25W SMF30W SMF35W SMF40W SMF50W SMF60W SMF6GW SMF8GW SMF10GW SMF12GW SMF13GW SMF16GW SMF20GW SMF25GW SMF30GW SMF35GW SMF40GW SMF50GW SMF60GW SMSF6W SMSF8W SMSF10W SMSF12W SMSF13W SMSF16W SMSF20W SMSF25W SMSF30W SMSF35W SMSF40W SMSF50W SMSF60W SMSF6GW SMSF8GW SMSF10GW SMSF12GW SMSF13GW SMSF16GW SMSF20GW SMSF25GW SMSF30GW SMSF35GW SMSF40GW SMSF50GW SMSF60GW SMK6W SMK8W SMK10W SMK12W SMK13W SMK16W SMK20W SMK25W SMK30W SMK35W SMK40W SMK50W SMK60W SMK6GW SMK8GW SMK10GW SMK12GW SMK13GW SMK16GW SMK20GW SMK25GW SMK30GW SMK35GW SMK40GW SMK50GW SMK60GW SMSK6W SMSK8W SMSK10W SMSK12W SMSK13W SMSK16W SMSK20W SMSK25W SMSK30W SMSK35W SMSK40W SMSK50W SMSK60W SMSK6GW SMSK8GW SMSK10GW SMSK12GW SMSK13GW SMSK16GW SMSK20GW SMSK25GW SMSK30GW SMSK35GW SMSK40GW SMSK50GW SMSK60GW SMT6WUU  SMT8WUU SMT10WUU SMT12WUU SMT13WUU SMT16WUU SMT20WUU SMT25WUU SMT30WUU SMT6GWUU SMT8GWUU SMT10GWUU SMT12GWUU SMT13GWUU SMT16GWUU SMT20GWUU SMT25GWUU SMT30GWUU SMST6WUU SMST8WUU SMST10WUU SMST12WUU SMST13WUU SMST16WUU SMST20WUU SMST25WUU SMST30WUU SMST6GWUU SMST8GWUU SMST10GWUU SMST12GWUU SMST13GWUU SMST16GWUU SMST20GWUU SMST25GWUU SMST30GWUU SMFC6 SMFC8 SMFC10 SMFC12 SMFC13 SMFC16 SMFC20 SMFC25 SMFC30 SMFC35 SMFC40 SMFC50 SMFC60 SMFC6G SMFC8G SMFC10G SMFC12G SMFC13G SMFC16G SMFC20G SMFC25G SMFC30G SMFC35G SMFC40G SMFC50G SMFC60G SMSFC6 SMSFC8 SMSFC10 SMSFC12 SMSFC13 SMSFC16 SMSFC20 SMSFC25 SMSFC30 SMSFC35 SMSFC40 SMSFC50 SMSFC60 SMSFC6G SMSFC8G SMSFC10G SMSFC12G SMSFC13G SMSFC16G SMSFC20G SMSFC25G SMSFC30G SMSFC35G SMSFC40G SMSFC50G SMSFC60G SMKC6 SMKC8 SMKC10 SMKC12 SMKC13 SMKC16 SMKC20 SMKC25 SMKC30 SMKC35 SMKC40 SMKC50 SMKC60 SMKC6G SMKC8G SMKC10G SMKC12G SMKC13G SMKC16G SMKC20G SMKC25G SMKC30G SMKC35G SMKC40G SMKC50G SMKC60G SMSKC6 SMSKC8 SMSKC10 SMSKC12 SMSKC13 SMSKC16 SMSKC20 SMSKC25 SMSKC30 SMSKC35 SMSKC40 SMSKC50 SMSKC60 SMSKC6G SMSKC8G SMSKC10G SMSKC12G SMSKC13G SMSKC16G SMSKC20G SMSKC25G SMSKC30G SMSKC35G SMSKC40G SMSKC50G SMSKC60G SMTC6UU SMTC8UU SMTC10UU SMTC12UU SMTC13UU SMTC16UU SMTC20UU SMTC25UU SMTC30UU SMTC6GUU SMTC8GUU SMTC10GUU SMTC12GUU SMTC13GUU SMTC16GUU SMTC20GUU SMTC25GUU SMTC30GUU SMSTC6UU SMSTC8UU SMSTC10UU SMSTC12UU SMSTC13UU SMSTC16UU SMSTC20UU SMSTC25UU SMSTC30UU SMSTC6GUU SMSTC8GUU SMSTC10GUU SMSTC12GUU SMSTC13GUU SMSTC16GUU SMSTC20GUU SMSTC25GUU SMSTC30GUU SMF6WUU-E SMF8WUU-E SMF10WUU-E SMF12WUU-E SMF13WUU-E SMF16WUU-E SMF20WUU-E SMF25WUU-E SMF30WUU-E SMF35WUU-E SMF40WUU-E SMF50WUU-E SMF60WUU-E SMF6GWUU-E SMF8GWUU-E SMF10GWUU-E SMF12GWUU-E SMF13GWUU-E SMF16GWUU-E SMF20GWUU-E SMF25GWUU-E SMF30GWUU-E SMF35GWUU-E SMF40GWUU-E SMF50GWUU-E SMF60GWUU-E SMSF6WUU-E SMSF8WUU-E SMSF10WUU-E SMSF12WUU-E SMSF13WUU-E SMSF16WUU-E SMSF20WUU-E SMSF25WUU-E SMSF30WUU-E SMSF6GWUU-E SMSF8GWUU-E SMSF10GWUU-E SMSF12GWUU-E SMSF13GWUU-E SMSF16GWUU-E SMSF20GWUU-E SMSF25GWUU-E SMSF30GWUU-E SMK6WUU-E SMK8WUU-E SMK10WUU-E SMK12WUU-E SMK13WUU-E SMK16WUU-E SMK20WUU-E SMK25WUU-E SMK30WUU-E SMK35WUU-E SMK40WUU-E SMK50WUU-E SMK60WUU-E SMK6GWUU-E SMK8GWUU-E SMK10GWUU-E SMK12GWUU-E SMK13GWUU-E SMK16GWUU-E SMK20GWUU-E /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Structure: Rod End
Material: Stainless Steel
Load Direction: Radial Spherical Plain Bearing
Add Lubricant: Self-lubricating
Outer Structure: Outer Ring of Single-Slit
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China OEM High Quality Linear Ball Bearing Lm Series Linear Flange Lm20uu/Lmk20uu/Lmf20uu   ball bearingChina OEM High Quality Linear Ball Bearing Lm Series Linear Flange Lm20uu/Lmk20uu/Lmf20uu   ball bearing
editor by CX 2024-04-19

China Hot selling CZPT CZPT Bearing Factory Direct Selling High Quality Linear Bearing Lmf Lmk 2RS P0 P6 Bearings drive shaft bearing

Product Description

Product Description

 

MAIN PRODUCTS

Tapered roller bearings, cylindrical roller bearings, ball bearings, self-aligning roller bearings, base bearings, car hub bearings,

truck hub bearings and other products, We can customize the bearing according to the drawings or samples provided by the customer

FIELDS OF APPLICATION

Grain machinery, textile machinery, washing machinery, engineering machinery, industrial deceleration machinery, woodworking

machinery,papermaking machinery, mining machinery, coal mining machinery, lifting machinery, construction machinery,

large transportation equipment,chemical machinery, petroleum machinery, metallurgical industry, large steel mills, cement plants,

energy industry, automobiles, trucks, etc.

Packaging & Shipping

Plastic bag + single box + carton + tray;Industrial packaging + carton + pallet;

We also can According to your requirements to change.

Company Profile

HangZhou CZPT Trading Co., Ltd. was founded in August 2014. It is a bearing manufacturer integrating research, development and sale of bearings, with a floor area of 18,000 square meters and a plant area of 4,800 square meters. The company has a state-level enterprise technology center and a number of provincial high-tech enterprises with strong technical strength. our company was honored as competitive brand in the market.

Equipped with modern production equipment and advanced detection instruments, the company specially produces Bearings including 3 varieties of spherical roller bearings, namely cylindrical roller bearings, tapered roller bearings and thrust
spherical roller bearings, Automobile Hub Bearing,to replace imported high-end products.

With precision of grade P0, grade P6 P5 P4, we bearings are widely used in complete products in metallurgical, mining,
petroleum, chemical, coal, cement, papermaking, wind power, heavy machinery, engineering machinery and port machinery industries. With self-run import & export rights, it sells its products not only across China, but also in tens of other countries and areas such as the United States, Canada, Italy, Russia, German and South Africa.

We would like to serve the customers around the world with our trustworthy products, reasonable price and attentive service.
The leading products of the company cover 3 main categories which include more than 3,000 types of bearing products.

FAQ

1.What is your Before-sales Service?
Offer to bear related consultation about technology and application;
Help customers with bearing choice, clearance configuration, products’ life and reliability analysis;
Offer highly cost-effective and complete solution program according to site conditions;
Offer localized program on introduced equipment to save running cost

2.What is your latest delivery time?
If the goods are in stock, usually 5-10 days. Or if the goods are not in stock, it is 15-20 days, which is based
on the quantity.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required
by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
30% deposit,balance payment before delivery.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number,
account or account, we will contact you as soon as possible.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Double
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China Hot selling CZPT CZPT Bearing Factory Direct Selling High Quality Linear Bearing Lmf Lmk 2RS P0 P6 Bearings   drive shaft bearingChina Hot selling CZPT CZPT Bearing Factory Direct Selling High Quality Linear Bearing Lmf Lmk 2RS P0 P6 Bearings   drive shaft bearing
editor by CX 2024-04-16