Tag Archives: groove ball bearing

China supplier Rowing-Machine Plastic Coated Bearing China Csk25 Linear Flat Needle Roller Bearings deep groove ball bearing

Product Description

China Machine Bearings Sch87 CSK12P-2RS Open Type Drawn Cup Needle Roller Bearings

Product Description

Needle bearings are roller bearings with cylindrical rollers that are thin and long relative to their diameter. Such rollers are called needle rollers. Despite having a small cross-section, the bearing still has a high load-bearing capacity. Needle roller bearings are equipped with thin and long rollers (roller diameter D≤5mm, L/D≥2.5, L is the length of the roller), so The radial structure is compact, and its inner diameter size and load capacity are the same as other types of bearings, and its outer diameter is the smallest, especially suitable for support structures with limited radial installation dimensions.

Depending on the application occasion, a bearing without an inner ring or a needle roller and cage assembly can be selected. At this time, the journal surface and the housing hole surface matched with the bearing are directly used as the inner and outer rolling surfaces of the bearing. In order to ensure the load capacity and running performance As with bearings with rings, the hardness, machining accuracy, and surface quality of the raceway surface of the shaft or housing hole should be similar to the raceway of the bearing ring. This kind of bearing can only bear radial load

In addition to those listed in the catalog, bearings that can be used for general engineering, such as open-type drawn cup needle roller bearings (1), closed-type drawn cup needle roller bearings
(2), needle roller bearing with inner ring
(3) and needle roller bearings without inner ring/needle roller bearings without inner ring and without a cage
(4), with cage and without cage filled with needle roller bearings

A combined needle roller bearing is a bearing unit composed of radial needle roller bearing and thrust bearing components. It has a compact structure, small size, high rotation accuracy, and can withstand a certain axial load while bearing a high radial load. And the product structure is diverse, widely adaptable, and easy to install. Combined needle roller bearings are widely used in various mechanical equipment such as machine tools, metallurgical machinery, textile machinery, and printing machinery, and can make the mechanical system design very compact and smart

Thrust bearings consist of thrust cage assemblies with needle rollers or cylindrical rollers or balls and thrust washers. Needle rollers and cylindrical rollers are held and guided by thrust cages. When used with different series of DF thrust bearing washers, many different combinations are available for bearing configurations. Due to the selection of high-precision cylindrical rollers (needle rollers) to increase the contact length, this bearing can obtain high load capacity and high rigidity in a small space. Another advantage is that if the surface of the adjacent part is suitable for the raceway surface, the gasket can be omitted, which can make the design compact. The cylindrical surfaces of the needle rollers and cylindrical rollers used in DF thrust needle roller bearings and thrust cylindrical roller bearings are Modified face to reduce edge stress and increase service life

Product Parameters

Product Name Needle Bearing 
Brand Name HOTE BEARING
Type Inch Tapered Roller Bearing/Taper Roller Bearing
Weight Standard weight
Specifications Standard size 
Material Chrome steel GCR-15
CAGE Steel Cage and Nylon Cage
Rolling body Roller

 

 

Designation Bearing Series   Dimensions Mass Load Rating Torque Rating  Limiting Speed
d (mm) D (mm) L (mm) (kg) Dynamic(kN) Static(kN) (N·m) (RPM)
CSK8        8 22 9 0.015 3.28 0.86 5 15000
CSK12   CSK12 P   6201 12 32 10 0.04 6.1 2.77 18.6 10000
CSK15   CSK15 P CSK15 PP  6202 15 35 11 0.06 7.4 3.42 34 8400
CSK17  CSK17 P CSK17 PP  6203 17 40 12 0.07 7.9 3.8 60 7350
CSK20 CSK20 P CSK20 PP  6204 20 47 14 0.11 9.4 4.46 100 6000
CSK25   CSK25 P CSK25 PP  6205 25 52 15 0.14 10.7 5.46 170 5200
CSK30   CSK30 P CSK30 PP  6206 30 62 16 0.21 11.7 6.45 276 4200
CSK35   CSK35 P CSK35 PP  6207 35 72 17 0.3 12.6 7.28 350 3600
CSK40  CSK40 P CSK40 PP   –   40 80 22 0.5 15.54 12.25 650 3000
CSK8 2RS        –   8 22 9 0.015 3.28 0.86 5 15000
CSK12 2RS CSK12P-2RS    –   12 32 14 0.05 6.1 2.77 18.6 10000
CSK15 2RS  CSK15P-2RS    –   15 35 16 0.07 7.4 3.42 34 8400
CSK17 2RS  CSK17P-2RS    –   17 40 17 0.09 7.9 3.8 60 7350
CSK20 2RS CSK20P-2RS    –   20 47 19 0.145 9.4 4.46 100 6000
CSK25 2RS CSK25P-2RS    –   25 52 20 0.175 10.7 5.46 170 5200
CSK30 2RS  CSK30P-2RS    –   30 62 21 0.27 11.7 6.45 276 4200
CSK35 2RS  CSK35P-2RS    –   35 72 22 0.4 12.6 7.28 350 3600
CSK40 2RS CSK40P-2RS    –   40 80 27 0.6 15.54 12.25 650 3000

Detailed Photos

 

FAQ

Q1:What is your Before-sales Service?
1>. Offer to bear related consultation about technology and application;

2>.Help customers with bearing choice, clearance configuration, product” life, and reliability analysis;

3>. Offer highly cost-effective and complete solution program according to site conditions;

4>. Offer localized program on introduced equipment to save running cost

Q2: What is your After-sales Service?
1>. Offer training about bearing installation and maintenance;

2>.Help customers with trouble diagnosis and failure analysis;

3>. Visit customers regularly and feedback on their rational suggestions and requirements to the company.

Q3: How about your company’s strength?
1>.FREE SAMPLES:
contact us by email or trade manager, we will send the free samples according to your request. 

2>. World-Class Bearing:
We provide our customers with all types of indigenous roller bearings of world-class quality.

3>.OEM or Non-Stand Bearings: 
Any requirement for Non-standard roller bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 

4>.Genuine products With Excellent Quality: 
The company has always proved the 100% quality products it provides with genuine intent.

5>. After-Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.

6>.Quick Delivery: 
The company provides just-in-time delivery with its streamlined supply chain.

7>.Cost Saving: 
We provide long-life, shock-resistant, and high-reliability roller bearings with excellent quality and better performance.
Resulting in increased cost savings.

Q4: What will we do if you are not satisfied with the product?
A: If have any abnormal, Please contact us at first time, and we will immediately process

Q5: How long will you respond to our problems?
A: We will respond within 1 hour. 24 hours to solve your problem

Q6: Is optional lubrication provided?
A: We can offer a wide range of oils and greases for a variety of applications. Please contact our engineer for technical
assistance with any special requirements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: Without Cage
Rows Number: Multiple
Load Direction: Thrust Bearing
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China supplier Rowing-Machine Plastic Coated Bearing China Csk25 Linear Flat Needle Roller Bearings   deep groove ball bearingChina supplier Rowing-Machine Plastic Coated Bearing China Csk25 Linear Flat Needle Roller Bearings   deep groove ball bearing
editor by CX 2024-05-13

China Good quality Chrome Plated Linear Rod Hardness HRC58 Dia10 Linear Shaft Bearing deep groove ball bearing

Product Description

 

Product Description

Description Linear motion Rolling CZPT series

ERSK Linear offers linear bearings in a variety of different options to meet a wide range of customer needs. Available in hardened steel, CK45 material steel, SUJ2 material steel, Aluminium alloy material , inch and metric, Simplicity Shafting maintains the ideal surface finish for linear plain bearings and ball bearings.

Solid round shafting is available in inch sizes from 3/16″ thru 4″ and metric sizes from 3 mm thru 80 mm

Linear bushing (LM) Products

Low frictional linear motion

Steel balls are accurately guided by a retainer, so low frictional resistance and stable linear motion can be achieved.

Simple replacement of conventional plain bushings

It is easy to use Linear Bushings instead of conventional plain bushings, because both types are used with a round shaft, and no major redesign is necessary.

Wide variations

For each dimensional series, standard, adjustable clearance and open types are available with and without seals, so the best linear bushing for the application may be selected. In addition to the standard type, the high-rigidity long type is available. These types can be selected to suit the requirements in applications.

Miniature linear bushing LM

Compact design

Miniature Linear Bushing is very small in size, allowing for compact assembly in machines and equipment.

High Reliability

ERSK linear bearing has very stringent quality control standards covering every production process. With proper lubrication and use,trouble-free operation for an extended period of time is possible.

Smooth Operation

The high efficiency of linear shaft is vastly superior to conventional shaft. The torque required is less than 30%. Linear motion can be easily changed from rotary motion. The linear bearings are moved very smoothly in the linear shaft.

High Durability

Rigidly selected materials, intensive heat treating and processing techniques, backed by years of experience,have resulted in the most durable linear bearings manufactured.

Linear bearings, linear blocks, linear bushing, linear motion units, linear motion slide

Application

For delicate application in industrial application, machine tool and automation application.

Detailed Photos

 

Product Parameters

Linear Bearing

Material and Heat Treatment

Matched parts:

Item

Material

Surface Treatment

Linear bearing: SC,SC-AJ, SC-L,SC-AJ-L,SCE,SCE-L,SCE-AJ,SCE-AJ-L

Aluminium alloy

Clear Anodized

Linear shaft support: SHF, SK

Aluminium alloy

Clear Anodized

Open linear blocks: SBR, SBR-L,SBR-PP, TBR,TBR-L

Aluminium alloy

Clear Anodized

Linear bushing: LM, LM-AJ, LM-OP, LM-L, LME, LME-AJ, LME-OP

Bearing steel

Induction Heating Hardening or
Electroless Nickel Plating

Square Flange linear bushing: LMK, LMK-L, LMEK , LMEK-L,

Bearing steel

Induction Heating

Hardening or

Electroless Nickel Plating

Round Flange linear bushing: LMF, LMF-L, LMEF , LMEF-L,

Bearing steel

Double cutting flange linear bushing: LMH,LMH-L, LMEH, LMEH-L Bearing steel

Induction Heating

Hardening or

Electroless Nickel Plating

Item

Model

Linear shaft support rail

SBR, TBR

Ball-type linear bearings

LM-UU, LM-AJUU,LM-LUU

Flange mounts-plain linear bearings

LMF-UU,LMK-UU, LMH-UU

LMF-LUU,LMK-LUU, LMH-LUU

Flange mounts- linear ball bearing

LMF-UU,LMK-UU, LMH-UU

LMF-LUU,LMK-LUU, LMH-LUU

Linear ball bearing pillow blocks

SC-UU,SC-AJUU,SC-VUU, SC-LUU,SC-AJLUU,SBR-UU, TBR-UU,SBR-LUU,TBR-LUU

SBR-PPUU

Linear shaft bearing

SK, SHF

Packaging & Shipping

PP bag for each linear shaft, Standard exported carton outside for small order shipping by international express, such as DHL, TNT, UPS

Wooden box outside for big quantity or very long linear shaft by sea, by air

Company Profile

Our principle:

Quality first, credibility is the key, the price followed

Our Advantages

Our service

Our Services:

1) ERSK professional manufacturer

a,Professional exporting team

b,very experience production factory from 2004 year

c,Have ourselves brand ERSK

2) Quality Control

a,QC department to control quality for each step

b,High precision production equipment, such as Chiron FZ15W, DMG XIHU (WEST LAKE) DIS. MAX3000 Machining Centers, Control precision automatically

c,ISO9001:2008 quality control system

3) Competitive Price

4) Quickly Delivery

a,High efficient production team,Large warehous, sufficient stock,

b,Delivery time: 2-7days to small order, 7-30days to bulk order

Related products

There are many kinds of products we can offer, If you are interested in them, please click the picture and see the details.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Magnetically, Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Ordinary
Flange Shape: Cutting-Edge
Samples:
US$ 40/Piece
1 Piece(Min.Order)

|

Order Sample

ball screw assemble
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China Good quality Chrome Plated Linear Rod Hardness HRC58 Dia10 Linear Shaft Bearing   deep groove ball bearingChina Good quality Chrome Plated Linear Rod Hardness HRC58 Dia10 Linear Shaft Bearing   deep groove ball bearing
editor by CX 2024-04-25

China Standard Distributor/Ball/Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing Bearing/Car Accessories 6813 ball bearing

Product Description

The rings and balls of all-ceramic deep groove ball bearings are made of silicon nitride (Si3N4) ceramic material. This bearing can be designed as a full ball or with PTFE, PEEK or stainless steel 304/316 cage. PTFE is the default standard cage.
Full ceramic deep groove ball bearings have the characteristics of non-magnetic and electrical insulation, wear-resistant and corrosion-resistant, oil-free and self-lubricating, high temperature and cold resistance, and can be used in extremely harsh environments and special working conditions. It can be used in high temperature environment above 400ºC under the condition of full ball or equipped with stainless steel 316 cage. The PEEK cage can also be used at temperatures above 250°C. For CZPT temperatures (for example, lower than -70°C), full ceramic bearings with PTFE cages or stainless steel 316 cages can be used. Normally, the normal radial clearance is C0. When it is necessary to adapt to the extreme environment, other clearances can be customized.

open size(mm) Installation size (mm) weight weight
model Inner diameter Outer diameter Thickness Chamfer da da Da ra Si3N4 ZrO2
d D B r(min) min max max max (kg) (kg)
683 3 7 2 0.1   /     0.00013 0.00571
693 8 3 0.15   /     0.00571 0.0005
603 9 3 0.15   /     0.0004 0.0007
623 10 4 0.15   /     0.0007 0.0013
633 13 5 0.15   /     0.0014 0.0571
684 4 9 2.5 0.1 4.8 / 8.2 0.1 0.0003 0.0005
694 11 4 0.15 5.2 / 9.8 0.15 0.0007 0.0013
604 12 4 0.2 5.6 / 10.4 0.2 0.0009 0.0017
624 13 5 0.2 5.6 / 11.4 0.2 0.0013 0.571
634 16 5 0.3 6 / 14 0.3 0.0571 0.004
685 5 11 3 0.15 6.2 / 9.8 0.15 0.0005 0.0009
695 13 4 0.2 6.6 / 11.4 0.2 0.001 0.0019
605 14 5 0.2 6.6 / 12.4 0.2 0.0015 0.0571
625 16 5 0.3 7 / 14 0.3 0.0571 0.0038
635 19 6 0.3 7 / 17 0.3 0.0036 0.0066
686 6 13 3.5 0.15 7.2 / 11.8 0.15 0.0008 0.0015
696 15 5 0.2 7.6 / 13.4 0.2 0.0016 0.003
606 17 6 0.3 8 / 15 0.3 0.0571 0.0046
626 19 6 0.3 8 / 17 0.3 0.0034 0.0063
636 22 7 0.3 8 / 20 0.3 0.0058 0.5718
687 7 14 3.5 0.15 8.2 / 12.8 0.15 0.0009 0.0017
697 17 5 0.3 9 / 15 0.3 0.0571 0.004
607 19 6 0.3 9 / 17 0.3 0.0032 0.0059
627 22 7 0.3 9 / 20 0.3 0.0053 0.0098
637 26 9 0.3 9 / 24 0.3 0.01 0.0185
688 8 16 4 0.2 9.6 / 14.4 0.2 0.0014 0.0571
698 19 6 0.3 10 / 17 0.3 0.003 0.0056
608 22 7 0.3 10 / 20 0.3 0.005 0.0093
628 24 8 0.3 10 / 22 0.3 0.0072 0.013
638 28 9 0.3 10 / 26 0.3 0.012 0.571
689 9 17 4 0.2 10.6 / 15.4 0.2 0.0015 0.0571
699 20 6 0.3 11 / 18 0.3 0.0035 0.0065
609 24 7 0.3 11 / 22 0.3 0.006 0.011
629 26 8 0.3 11 / 24 0.3 0.0081 0.015
639 30 10 0.6 13 / 26 0.6 0.015 0.571
6800 10 19 5 0.3 12 12 17 0.3 0.0571 0.004
6900 22 6 0.3 12 12.5 20 0.3 0.0038 0.007
6000 26 8 0.3 12 13 24 0.3 0.0075 0.014
6200 30 9 0.6 14 16 26 0.6 0.013 0.571
6300 35 11 0.6 14 16.5 31 0.6 0.571 0.04
6801 12 21 5 0.3 14 14 19 0.3 0.0571 0.005
6901 24 6 0.3 14 14.5 22 0.3 0.0042 0.008
16001 28 7 0.3 14 / 26 0.3 0.0079 0.015
6001 28 8 0.3 14 15.5 26 0.3 0.0092 0.017
6201 32 10 0.6 16 17 28 0.6 0.015 0.571
6301 37 12 1 17 18 32 1 0.571 0.046
6802 15 24 5 0.3 17 17 22 0.3 0.571 0.005
6902 28 7 0.3 17 17 26 0.3 0.0063 0.012
16002 32 8 0.3 17 / 30 0.3 0.011 0.571
6002 32 9 0.3 17 19 30 0.3 0.013 0.571
6202 35 11 0.6 19 20.5 31 0.3 0.019 0.035
6302 42 13 1 20 22.5 37 1 0.035 0.064
6803 17 26 5 0.3 19 19 24 0.3 0.571 0.005
6903 30 7 0.3 19 19.5 28 0.3 0.0071 0.013
16003 35 8 0.3 19 / 33 0.3 0.014 0.571
6003 35 10 0.3 19 21.5 33 0.3 0.017 0.032
6203 40 12 0.6 21 23.5 36 0.6 0.571 0.052
6303 47 14 1 22 25.5 42 1 0.047 0.087
6403 62 17 1.1 23.5 / 55.5 1 0.11 0.21
6804 20 32 7 0.3 22 22.5 30 0.3 0.007 0.013
6904 37 9 0.3 22 24 35 0.3 0.015 0.571
16004 42 8 0.3 22 / 40 0.3 0.02 0.037
6004 42 12 0.6 24 25.5 38 0.6 0.571 0.052
6204 47 14 1 25 26.5 42 1 0.045 0.082
6304 52 15 1.1 26.5 28 45.5 1 0.06 0.11
6404 72 19 1.1 26.5 / 65.5 1 0.17 0.31
6805 25 37 7 0.3 27 27 35 0.3 0.009 0.016
6905 42 9 0.3 27 28.5 40 0.3 0.018 0.032
16005 47 8 0.3 27 / 45 0.3 0.571 0.045
6005 47 12 0.6 29 30 43 0.6 0.033 0.061
6205 52 15 1 30 32 47 1 0.054 0.099
6305 62 17 1.1 31.5 36 55.5 1 0.098 0.18
6405 80 21 1.5 33 / 72 1.5 0.22 0.41
6806 30 42 7 0.3 32 32 50 1 0.01 0.018
6906 47 9 0.3 32 34 57 1 0.571 0.04
16006 55 9 0.3 32 42.5 65.5 1 0.036 0.067
6006 55 13 1 35 36.5 53 1 0.048 0.089
6206 62 16 1 35 38.5 60 1 0.083 0.15
6306 72 19 1.1 36.5 42.5 68.5 1 0.14 0.27
6406 90 23 1.5 54 / 82 2 0.31 0.57
6807 35 47 7 0.3 37 37 45 0.3 0.011 0.571
6907 55 10 0.6 39 39 51 0.6 0.031 0.058
16007 62 9 0.3 37 / 60 0.3 0.045 0.082
6007 62 14 1 40 41.5 57 1 0.063 0.12
6207 72 17 1.1 41.5 44.5 65.5 1 0.12 0.22
6307 80 21 1.5 43 47 72 1.5 0.19 0.36
6407 100 25 1.5 43 / 92 1.5 0.4 0.73
6808 40 52 7 0.3 42 42 50 0.3 0.013 0.02
6908 62 12 0.6 44 46 58 0.6 0.05 0.09
16008 68 9 0.3 42 / 66 0.3 0.05 0.1
6008 68 15 1 45 47.5 63 1 0.08 0.15
6208 80 18 1.1 46.5 50.5 73.5 1 0.15 0.28
6308 90 23 1.5 48 53 80 1.5 0.27 0.49
6408 110 27 2 49 / 101 2 0.513 0.946
6809 45 58 7 0.3 47 47.5 56 0.3 0.016 0.571
6909 68 12 0.6 49 50 64 0.6 0.053 0.097
16009 75 10 0.6 49 / 71 0.6 0.07 0.13
6009 75 16 1 50 53.5 70 1 0.1 0.19
6209 85 19 1.1 51.5 55.5 78.5 1 0.175 0.32
6309 100 25 1.5 53 61.5 92 1.5 0.345 0.64
6409 120 29 2 54 / 111 2 0.64 1.18
6810 50 65 7 0.3 52 52.5 63 0.3 0.571 0.038
6910 72 12 0.6 54 55 68 0.6 0.06 0.1
16571 80 10 0.6 54 / 76 0.6 0.07 0.13
6571 80 16 1 55 58.5 75 1 0.11 0.2
6210 90 20 1.1 56.5 60 83.2 1 0.19 0.35
6310 110 27 2 59 68 101 2 0.44 0.82
6410 130 31 2.1 61 / 119 2 0.78 1.45
6811 55 72 9 0.3 57 59 70 0.3 0.03 0.06
6911 80 13 1 60 61.5 75 1 0.08 0.15
16011 90 11 0.6 59 / 86 0.6 0.11 0.2
6011 90 18 1.1 61.5 64 83.5 1 0.16 0.29
6211 100 21 1.5 63 66.5 92 1.5 0.26 0.48
6311 120 29 2 64 72.5 111 2 0.57 1.05
6411 140 33 2.1 66 / 129 2 0.95 1.76
6812 60 78 10 0.3 62 64 76 0.3 0.04 0.08
6912 85 13 1 65 66 80 1 0.08 0.15
16012 95 11 0.6 64 / 91 0.6 0.12 0.22
6012 95 18 1.1 66.5 69 88.5 1 0.17 0.32
6212 110 22 1.5 68 74.5 102 1.5 0.33 0.6
6312 130 31 2.1 71 79 119 2 0.72 1.32
6412 150 35 2.1 71   139 2 1.15 2.13
6813 65 85 10 0.6 69 69 81 0.6 0.05 0.1
6913 90 13 1 70 71.5 85 1 0.09 0.17
16013 100 11 0.6 69 / 96 0.6 0.13 0.23
6013 100 18 1.1 71.5 73 93.5 1 0.18 0.34
6213 120 23 1.5 73 80 112 1.5 0.42 0.77
6313 140 33 2.1 76 85.5 129 2 0.88 1.62
6814 70 90 10 0.6 74 74.5 86 0.6 0.056 0.1
6914 100 16 1 75 77.5 95 1 0.15 0.27
16014 110 13 0.6 74 / 106 0.6 0.18 0.34
6014 110 20 1.1 76.5 80.5 103.5 1 0.25 0.47
6214 125 24 1.5 78 84 117 1.5 0.45 0.84
6314 150 35 2.1 81 92 139 2 1.07 1.98
6815 75 95 10 0.6 79 79.5 91 0.6 0.06 0.11
6915 105 16 1 80 82 100 1 0.15 0.28
16015 115 13 0.6 79 / 111 0.6 0.19 0.36
6015 115 20 1.1 81.5 85.5 108.5 1 0.27 0.5
6215 130 25 1.5 83 90 122 1.5 0.5 0.92
6816 80 100 10 0.6 84 84.5 96 0.6 0.063 0.12
6916 110 16 1 85 87.5 105 1 0.16 0.3
16016 125 14 0.6 84 / 121 0.6 0.26 0.48
6016 125 22 1.1 86.5 91 118.5 1 0.36 0.67
6216 140 26 2 89 95.5 131 2 0.59 1.09
6817 85 110 13 1 90 90.5 105 1 0.11 0.2
6917 120 18 1.1 91.5 94.5 113.5 1 0.23 0.42
16017 130 14 0.6 89 / 126 0.6 0.27 0.5
6017 130 22 1.1 91.5 96 123.5 1 0.38 0.71
6217 150 28 2 94 102 141 2 0.73 1.35
6818 90 115 13 1 95 95.5 110 1 0.12 0.21
6918 125 18 1.1 96.5 98.5 118.5 1 0.24 0.45
16018 140 16 1 95 / 135 1 0.36 0.67
6018 140 24 1.5 98 103 132 1.5 0.5 0.92
6819 95 120 13 1 100 102 115 1 0.12 0.23
6919 130 18 1.1 101.5 104 123.5 1 0.25 0.46
16019 145 16 1 100 / 140 1 0.38 0.7
6019 145 24 1.5 103 109 137 1.5 0.51 0.95
6820 100 125 13 1 105 106 120 1 0.13 0.24
6920 140 20 1.1 106.5 111 133.5 1 0.35 0.64
16571 150 16 1 105 / 145 1 0.39 0.73
6571 150 24 1.5 108 113 142 1.5 0.54 0.99
6821 105 130 13 1 110 111 125 1 0.14 0.25
6921 145 20 1.1 111.5 116 138.5 1 0.36 0.66
6822 110 140 16 1 115 117 135 1 0.21 0.38
6922 150 20 1.1 116.5 121 143.5 1 0.37 0.69
6824 120 150 16 1 125 127 145 1 0.22 0.41

About us
ZheJiang REET BEARING.CO.,LTD is a professional bearing manufacturer and exporter.
We have a wealth of technical.All producing processes are finished in our manufactory. As an ISO9001:2000 certified manufacturer,we will solve various problems in application and use of our bearings. 
Our company is an authorized distributor of FAG, INA, CZPT and other world brand bearings.Our company has the right to self-export bearings and launches its own brand RTB.
Our bearing had been exported to more than 20 countries worldwide and are warmly welcomed.
We are looking forward to your order.
FAQ

1.Is the company a production factory or a trading company?
ZheJiang REET BEARING CO.,LTD is a manufacturing enterprise focusing on bearings and integrating research, production and sales.

2.How many the MOQ of your company?
Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

3.Does the company accept OEM or customized bearings?
In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

4.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

5.What are the company’s delivery terms?
We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Chamfer: 0.6
Si3n4 Weight: 0.05
Zro2 Weight: 0.1
Contact Angle: 15°
Aligning: Aligning Bearing
Separated: Separated
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China Standard Distributor/Ball/Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing Bearing/Car Accessories 6813   ball bearingChina Standard Distributor/Ball/Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing Bearing/Car Accessories 6813   ball bearing
editor by CX 2024-04-13

China Best Sales with Strong Lubrication Linear Guide Bearing HGH20ca for Industrial Automation deep groove ball bearing

Product Description

With Strong Lubrication Linear Xihu (West Lake) Dis. Bearing HGH20CA For  Industrial Automation

Features:
1.High positioning accuracy, high repeatability
The linear guideway is a design of rolling motion with a low friction coeffi cient, and the diff erence between dynamic and static friction is very small. Therefore, the stick-slip will not occur when submicron feeding is making. 

2.Low frictional resistance, high precision maintained for long period
The frictional resistance of a linear guideway is only 1/20th to 1/40th of that in a slide guide. With a linear guideway, a well lubrication can be easily achieved by supplying grease through the grease nipple on carriage or utilizing a centralized oil pumping system, thus the frictional resistance is decreased and the accuracy could be maintained for long period.

3.Suitable for high speed operation
Due to the characteristic of low frictional resistance, the required driving force is much lower than in other systems, thus the power consumption is small. Moreover, the temperature rising effect is small even under high speed operation.

4.Easy installation with interchangeability
Compared with the high-skill required scrapping process of conventional slide guide, the linear guideway can offer high precision even if the mounting surface is machined by milling or grinding. Moreover the interchangeability of linear guideway gives a convenience for installation and future maintenance.

Model list:

Application:

1. Automatic controlling machine
2. Semi-conductor industry
3. General industry machinery
4. Medical equipment
5. Solar energy equipment
6. Machine tool
7. Parking system
8. High-speed rail and aviation transportation equipment, etc.

Package & Shipping:

1.Package: Carton or wooden case
2.Delivery time: 15 days after receiving the deposit
3.Shipping: by express (DHL, TNT, FedEx, etc.) or by sea

Our service:
1. Help customer to choose correct model, with CAD & PDF drawing for your reference.
2. Professional sales team, make your purchase smooth.
3. During warranty period, any quality problem of CZPT product, once confirmed, we will send a new 1 to replace.

Company information:
HangZhou CZPT Transmission Machinery Co., Ltd, is a specialized manufacturer in linear motion products in China, which was established in 1999. Based on the strong technical strength, outstanding quality and high capacity, we have a good reputation both in China and abroad, and now we have many customers all over the world. Our main products are ball screw, ball spline, linear guide, linear bearing, mono stage, machine tool spindle, ball screw support unit and locknut. You may find more information on our website at www.toco.tw.

FAQ:

1.Q: Why choose TOCO?
  A: Professional mechanical manufacture for years with full experience, direct factory price.
2.Q: What payment method do you accept?
  A: We accept T/T, L/C, DP, WesternUnion.
3.Q: What’s the time of delivery? 
  A: It’s subject to your order quantity and our production schedule, usually 7-15 days after receiving the deposit.
4.Q: What’s your guarantee peroid?
  A: CZPT provides 1 year quality guarantee for the products from your purchase date, except the artificial damage.

ADD: NO.11 Jinying 1st street, chenwu village,Houjie town  HangZhou city ZheJiang province China.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Cold-Resistant, Heat-Resistant, Wear-Resistant, High Temperature-Resistance
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Surface Treatment: Polishing
Material: Carbon Steel
Model: HGH,Hgw,Egh,Egw,Mgn,Mgw.
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China Best Sales with Strong Lubrication Linear Guide Bearing HGH20ca for Industrial Automation   deep groove ball bearingChina Best Sales with Strong Lubrication Linear Guide Bearing HGH20ca for Industrial Automation   deep groove ball bearing
editor by CX 2024-04-04

China factory NSK6302vvcm & Ns7sx/Double-Sided Tape Cover/Dustproof/Smooth and Durable/Worry-Free After-Sales Service deep groove ball bearing

Product Description

NSK6302VVCM & NS7SX/Double-sided tape cover/dustproof/smooth and durable/worry-free after-sales service

Product Description

1. Model: NSK6302ZZCM

   – “NSK” indicates that the bearing is manufactured by CZPT company.
   – “ZZ” indicates a double metal shield design, providing good sealing performance.
   – “CM” indicates the internal bearing clearance is in the standard size range.

2. Type: Deep Groove Ball Bearing
   – Deep groove ball bearings are 1 of the most common types of bearings, known for their high load-carrying capacity and smooth operation.
   – They are suitable for various applications, including power tools, automotive components, machinery, etc.

3. Dimensional Parameters:
   – Inner Diameter (d): 15millimeters
   – Outer Diameter (D): 42 millimeters
   – Width (B): 13 millimeters

4. Material:
   – The inner and outer rings, as well as the rolling elements, are typically made of high-quality bearing steel to provide sufficient strength and wear resistance.

5. Features:
   – Double metal shield design (ZZ) provides effective dust and dirt protection, extending the bearing’s lifespan.
   – Standard internal bearing clearance (CM) suitable for most general applications.
   – High-quality bearing steel material provides high load-carrying capacity and wear resistance.

 

Model Bore Diameter Outer Diameter Width
6201ZZCM 12 mm 32 mm 10 mm
6202ZZCM 15 mm 35 mm 11 mm
6203ZZCM 17 mm 40 mm 12 mm
6204ZZCM 20 mm 47 mm 14 mm
6205ZZCM 25 mm 52 mm 15 mm
6206ZZCM 30 mm 62 mm 16 mm
6207ZZCM 35 mm 72 mm 17 mm
6208ZZCM 40 mm 80 mm 18 mm
6209ZZCM 45 mm 85 mm 19 mm
6210ZZCM 50 mm 90 mm 20 mm
6211ZZCM 55 mm 100 mm 21 mm 
6212ZZCM 60 mm 110 mm 22 mm
6213ZZCM 65 mm 120 mm 23 mm
6214ZZCM 70 mm 125 mm 24 mm
6215ZZCM 75 mm 130 mm 25 mm
6216ZZCM 80 mm 140 mm 26 mm
6217ZZCM 85 mm 150 mm 28 mm
6218ZZCM 90 mm 160 mm 30 mm
6219ZZCM 95 mm 170 mm 32 mm
6220ZZCM 100 mm 180 mm 34 mm
6301ZZCM 12 mm 37 mm 12 mm
6302ZZCM 15 mm 42 mm 13 mm
6303ZZCM 17 mm 47 mm 14 mm
6304ZZCM 20 mm 52 mm 15 mm
6305ZZCM 25 mm 62 mm 17 mm
6306ZZCM 30 mm 72 mm 19 mm
6307ZZCM 35 mm 80 mm 21 mm
6308ZZCM 40 mm 90 mm 23 mm
6309ZZCM 45 mm 100 mm 25 mm
6310ZZCM 50 mm 110 mm 27 mm

Applications of Deep Groove Ball Bearings:

Deep groove ball bearings are a common type of bearing with a wide range of applications. Here are some common applications of deep groove ball bearings:

1. Electric Motors and Engines: Deep groove ball bearings are commonly used in electric motors and engines to support the rotating motion of the rotor and withstand axial and radial loads.

2. Automotive Industry: Deep groove ball bearings are widely used in the automotive industry, including engine, transmission systems, suspension systems, wheels, and subframes.

3. Machinery Equipment: Deep groove ball bearings are suitable for various machinery equipment, such as industrial machinery, agricultural machinery, construction equipment, textile machinery, etc. They are used for power transmission, supporting rotating components, and reducing friction.

4. Pumps and Fans: Deep groove ball bearings are used in rotating equipment such as pumps and fans to support the rotation of the impeller and provide stable operation.

5. Household Appliances: Deep groove ball bearings are commonly found in household appliances such as washing machines, air conditioners, electric fans, etc., to support the rotation of motor rotors.

6. Industrial Transmissions: Deep groove ball bearings are used in various industrial transmission systems, such as gear transmissions, chain drives, etc., to support rotational motion and transmit torque.

7. Bicycles and Motorcycles: Deep groove ball bearings are widely used in bicycle and motorcycle wheels, steering systems, and engines.

These are just some common applications of deep groove ball bearings. In reality, deep groove ball bearings are widely used in various machinery and industries. Their simple structure and efficient performance make them an ideal choice for many rotating devices.

Deep groove ball bearings have several advantages:

1. High load-carrying capacity: Deep groove ball bearings can withstand both radial and axial loads, making them suitable for various load conditions.

2. Low friction and high efficiency: Deep groove ball bearings have a ball-and-groove structure, resulting in low frictional losses and providing high speed and operational efficiency.

3. Axial stability: The structure of deep groove ball bearings offers good axial stability, allowing them to withstand axial forces and prevent axial displacement.

4. Simplified installation and maintenance: Deep groove ball bearings have a simple structure, making them easy to install and dismantle, saving time and costs. Additionally, they often do not require additional lubrication or sealing devices.

5. Diverse applications: Deep groove ball bearings are widely used in various industries and fields, including machinery, automotive, power tools, and household appliances, meeting different application requirements.

6. High reliability and durability: Deep groove ball bearings are made of high-quality materials and undergo precision manufacturing, ensuring excellent reliability and durability to maintain stable performance during long-term operation.

In summary, deep groove ball bearings offer advantages such as high load-carrying capacity, low friction and high efficiency, axial stability, simplified installation and maintenance, diverse applications, and high reliability and durability. These characteristics make them a crucial type of bearing widely used in various industrial sectors.
 

Factory Tour

Bearing inventory display

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Bearing Type: Deep Groove Ball Bearing
Bore Diameter: 15 mm
Outer Diameter: 42mm
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China factory NSK6302vvcm & Ns7sx/Double-Sided Tape Cover/Dustproof/Smooth and Durable/Worry-Free After-Sales Service   deep groove ball bearingChina factory NSK6302vvcm & Ns7sx/Double-Sided Tape Cover/Dustproof/Smooth and Durable/Worry-Free After-Sales Service   deep groove ball bearing
editor by CX 2024-04-03

China Standard Bearing Wheel Bearing Auto Bearing Linear Bearing Angular Contact Ball Bearing Taper Roller Bearing Deep Groove Ball Bearing bearing bronze

Product Description

Product Description

Detailed Photos

Certifications

Packaging & Shipping

Company Profile

ZheJiang CZPT Metal Co., Ltd. is located in HangZhou, ZheJiang Province,which is founded in 2571.

 Mainly engaged in the production and sales of auto parts. For the automobile after-sales maintenance market to provide a complete variety of high-quality parts products, the annual sales of 30 million US dollars, the products are exported to the United States, Europe, Russia, Southeast Asia, the Middle East and other dozens of countries and regions, enjoy a high reputation in the domestic and foreign markets.

It can provide professional solutions and is a trusted supplier in the automotive aftermarket. The company has passed the “three system” certification of quality, environment and occupational CZPT and safety. Scientific management system, first-class production testing equipment, exquisite technology to ensure product quality.

FAQ

Q1: How many the MOQ of your company?
A: Our company MOQ is 1pcs.

Q2: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.

Q3: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.

Q4 : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.

Q5: Is it your company is factory or Trade Company?
A: We have our own factory; our type is factory + trade.

Q6:  What time the guarantee of your bearing quality guarantee period?
A: 6 months ,Customer need supply photos and send bearing back.

Q7: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C.

Q8: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Noise Standard: Zv1 Zv2 Zv3 Zv4
Precision Rating: P0, P6, P5, P4
Transport Package: Single Box Packing+Cartons+Pallets
Specification: Zz 2RS
Trademark: Huazhong
Origin: China
Samples:
US$ 2.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Slides

Linear bearings play a crucial role in ensuring the smooth movement and operation of industrial conveyors and linear slides. Their contributions are as follows:

  • Reduced Friction:

Linear bearings are designed to minimize friction between moving components, facilitating smooth motion of conveyors and linear slides. This reduces wear and tear, energy consumption, and the need for frequent maintenance.

  • Precision Movement:

Linear bearings enable precise positioning and controlled movement. This precision is vital for conveyors and slides that require accurate placement of materials, products, or components.

  • Stability and Load Distribution:

Linear bearings distribute loads evenly across the bearing surface, enhancing stability and preventing uneven wear. This is especially important for conveyors that handle varying loads and linear slides that support heavy components.

  • Quiet and Vibration-Free Operation:

Linear bearings contribute to quiet and vibration-free operation. This is crucial in environments where noise reduction and minimal vibrations are essential for the comfort of operators and the integrity of products.

  • Efficient Energy Transfer:

Linear bearings ensure efficient energy transfer by reducing energy losses due to friction. This efficiency is particularly beneficial in systems where multiple conveyors or slides are connected, improving overall system performance.

  • Longevity and Reliability:

Linear bearings enhance the longevity and reliability of conveyors and slides by reducing wear on moving parts. This results in extended operational lifespans and reduced downtime for maintenance.

  • Flexibility and Customization:

Linear bearings come in various designs and sizes, allowing for customization to suit specific conveyor or slide requirements. This adaptability is valuable for accommodating different loads and motion profiles.

  • Wide Range of Industries:

Linear bearings find application in industries such as manufacturing, logistics, packaging, and material handling, where conveyors and linear slides are essential components of the workflow.

In summary, linear bearings contribute significantly to the efficient, precise, and reliable movement of industrial conveyors and linear slides. Their ability to reduce friction, ensure stability, and support heavy loads enhances the overall performance of these systems.

linear bearing

Factors to Consider When Selecting a Linear Bearing

Choosing the right linear bearing for a specific application involves considering several critical factors to ensure optimal performance and longevity:

  • Load Requirements:

Determine the magnitude and direction of the loads the linear bearing will experience. Consider both static and dynamic loads to select a bearing with an appropriate load capacity.

  • Precision and Accuracy:

For applications requiring precise positioning, choose linear bearings with high precision and low backlash. Factors like repeatability and positional accuracy are crucial.

  • Speed and Acceleration:

Consider the speed and acceleration at which the linear bearing will operate. Higher speeds may require bearings with lower friction and better heat dissipation.

  • Environmental Conditions:

Assess the environmental factors such as temperature, humidity, and exposure to contaminants. Choose linear bearings with suitable materials and seals to withstand the conditions.

  • Space Constraints:

Take into account the available space for mounting the linear bearing. Some applications may have limited space, necessitating compact and lightweight bearing options.

  • Maintenance Requirements:

Consider the maintenance needs of the bearing. Bearings with self-lubricating properties or easy access for lubrication can reduce maintenance frequency.

  • Mounting and Configuration:

Choose a linear bearing that can be easily mounted and integrated into your system’s design. Consider factors like mounting orientation and available mounting surfaces.

  • Life Expectancy:

Estimate the expected lifespan of the linear bearing based on the application’s requirements. Select a bearing with a suitable design life to prevent premature failures.

  • Cost and Budget:

Balance the desired performance with the available budget. Opt for linear bearings that provide the necessary features without exceeding cost limitations.

  • Accessories and Add-ons:

Consider any additional accessories or add-ons, such as seals, lubrication systems, or end caps, that can enhance the bearing’s performance and protection.

  • Manufacturer and Supplier:

Choose reputable manufacturers and suppliers that offer reliable products and good customer support. Quality assurance and technical assistance are essential.

Overall, a comprehensive assessment of these factors will help you select the most suitable linear bearing for your specific application, ensuring optimal performance, longevity, and cost-effectiveness.

China Standard Bearing Wheel Bearing Auto Bearing Linear Bearing Angular Contact Ball Bearing Taper Roller Bearing Deep Groove Ball Bearing   bearing bronzeChina Standard Bearing Wheel Bearing Auto Bearing Linear Bearing Angular Contact Ball Bearing Taper Roller Bearing Deep Groove Ball Bearing   bearing bronze
editor by CX 2024-02-24

China high quality Linear Bearings China Precision Ball Bearings Supply Nj222e China Bearings Nj Nu Bearing NF2222 Cylindrical Roller Bearing Deep Groove Ball Bearing bearing block

Product Description

Product Description

 


MAIN PRODUCTS

Tapered roller bearings, cylindrical roller bearings, ball bearings, self-aligning roller bearings, base bearings, car hub bearings,

truck hub bearings and other products, We can customize the bearing according to the drawings or samples provided by the customer

FIELDS OF APPLICATION

Grain machinery, textile machinery, washing machinery, engineering machinery, industrial deceleration machinery, woodworking

machinery,papermaking machinery, mining machinery, coal mining machinery, lifting machinery, construction machinery,

large transportation equipment,chemical machinery, petroleum machinery, metallurgical industry, large steel mills, cement plants,

energy industry, automobiles, trucks, etc.

  

Packaging & Shipping

Plastic bag + single box + carton + tray;Industrial packaging + carton + pallet;

We also can According to your requirements to change.

Company Profile

HangZhou CZPT Trading Co., Ltd. was founded in August 2014. It is a bearing manufacturer integrating
research, development and sale of bearings, with a floor area of 18,000 square meters and a plant area of 4,800
square meters. The company has a state-level enterprise technology center and a number of provincial high-tech
enterprises with strong technical strength. our company was honored as competitive brand in the market.

Equipped with modern production equipment and advanced detection instruments, the company specially
produces Bearings including 3 varieties of spherical roller bearings, namely cylindrical roller bearings,
tapered roller bearings and thrust spherical roller bearings, Automobile Hub Bearing,to replace imported
high-end products.

With precision of grade P0, grade P6  P5  P4, we bearings are widely used in complete products in metallurgical,
mining, petroleum, chemical, coal, cement, papermaking, wind power, heavy machinery, engineering machinery
and port machinery industries.  With self-run import & export rights, it sells its products not only across China,
but also in tens of other countries and areas such as the United States, Canada, Italy, Russia, German and South Africa. 

 We would like to serve the customers around the world with our trustworthy products, reasonable price and
attentive service. The leading products of the company cover 3 main categories which include more than 3,000 types of bearing products.

FAQ

 

1.What is your Before-sales Service?
Offer to bear related consultation about technology and application;
Help customers with bearing choice, clearance configuration, products’ life and reliability analysis;
Offer highly cost-effective and complete solution program according to site conditions;
Offer localized program on introduced equipment to save running cost

2.What is your latest delivery time?
If the goods are in stock, usually 5-10 days. Or if the goods are not in stock, it is 15-20 days, which is based
on the quantity.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required
by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
30% deposit,balance payment before delivery.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number,
account or account, we will contact you as soon as possible.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China high quality Linear Bearings China Precision Ball Bearings Supply Nj222e China Bearings Nj Nu Bearing NF2222 Cylindrical Roller Bearing Deep Groove Ball Bearing   bearing blockChina high quality Linear Bearings China Precision Ball Bearings Supply Nj222e China Bearings Nj Nu Bearing NF2222 Cylindrical Roller Bearing Deep Groove Ball Bearing   bearing block
editor by CX 2024-02-17

China manufacturer Lbe25 / Lbe25uu / Lbe25uu-Aj / Lbe25uu-Op Linear Bushing Ball Bearing 25X40X58mm deep groove ball bearing

Product Description

LBE25 / LBE25UU / LBE25UU-AJ / LBE25UU-OP  Linear Bushing Ball Bearing 25*40*58mm
 

LBE25UU Linear Bearing Specifications 

Stock Qty. 2650.pcs (More on the Way)

Drawing & Sepcifications:

 

LBE25UU Linear Bearing Descriptions

1): Weight: 0.16KG
2): HS CODE: 8482109000
3): Type: Linear Bushing
4): Country of Origin: JAPAN

 

LBE25UU Linear Bushing Shipping & Payment Ways

1): Lead Time: Within 2 Working Days.
2): Payment  : By Wire Transfer / Western Union / Paypal.
3): Shipping  : By Express (DHL/UPS/FEDEX,etc., / By Air / By Sea.

Besides,we also offer Linear Bushing Bearings given as Below with Good Prices:

LBE5-OP LBE5AJ LBE5-AJ
LBE8-OP LBE8AJ LBE8-AJ
LBE12-OP LBE12AJ LBE12-AJ
LBE16-OP LBE16AJ LBE16-AJ
LBE20-OP LBE20AJ LBE20-AJ
LBE25-OP LBE25AJ LBE25-AJ
LBE30-OP LBE30AJ LBE30-AJ
LBE40-OP LBE40AJ LBE40-AJ
LBE50-OP LBE50AJ LBE50-AJ
LME5-OP LME5AJ LME5-AJ
LME8-OP LME8AJ LME8-AJ
LME12-OP LME12AJ LME12-AJ
LME16-OP LME16AJ LME16-AJ
LME20-OP LME20AJ LME20-AJ
LME25-OP LME25AJ LME25-AJ
LME30-OP LME30AJ LME30-AJ
LME40-OP LME40AJ LME40-AJ
LME50-OP LME50AJ LME50-AJ

    HangZhou Droke Transmission Machinery Co.,Ltd which is bearing Business factory model in China.  
Below is some of our best sellers for your reference. 
Deep groove ball bearings 
Cylindrical roller bearings 
Full complement cylindrical roller bearings
Spherical roller bearings 
Needle roller bearings 
Thrust ball bearings 
Tapered roller bearings 
Angular contact ball bearings 
Self-aligning ball bearings 
Except bearing series we also  have Casting series as follow: 
High performance material casting Casting for commercial vehicle 
Casting for construction machinery 
Castings for agricultural equipment Special vehicle 
Casting Casting of robot Wind turbine casting 
Any interested, more information& SAMPLE will be provided for you reference /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: High Speed
Function: Super
Flange Shape: Customized
Shape: Customized
Series: Lbe
Material: Bearing Steel
Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China manufacturer Lbe25 / Lbe25uu / Lbe25uu-Aj / Lbe25uu-Op Linear Bushing Ball Bearing 25X40X58mm   deep groove ball bearingChina manufacturer Lbe25 / Lbe25uu / Lbe25uu-Aj / Lbe25uu-Op Linear Bushing Ball Bearing 25X40X58mm   deep groove ball bearing
editor by CX 2024-02-13

China wholesaler Wj831 OEM Motor/Spherical/Cylindrical/Tapered/Taper Roller Earing/Angular/Insert/Thrust/Linear/Pillow Block/Guide Rail/Ball Screw/Deep Groove Ball Bearing bearing assembly

Product Description

Product Description

WHY CHOOSE E-ASIA BEARING?

1) 20 years of rich bearing industry export experience
2) ISO & MPA & CE & SGS & BV certified
3) Professional engineers team and Superior machines
4) 1 hour to HangZhou port or ZheJiang port
5) Strict quality inspection (3 steps) before shipment, such as SGS/BV third party certified.

CHOOSE E-ASIA       REFUSED ONE TIME BUSINESS

Deep groove ball bearing 5 88506 88507 88508A 88508 88509 622 62303 62304 62305 62306 62307 62308 62309 62310
Taper roller bearings 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35714 35716 35718 35710 35712 35714 35716 35710 35714 30302 30303 30304 30305 30306 30307 30308 3 3 0571 3 0571 3 0 30321 30322 30324 30326 30328 30330 30332 30334 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32224 32226 32228 32230 32232 32236 32238 32240 32244 32248 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32324 32326 32330 32334 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31324 31326 31328 31332 32 325714 320726 325718 53856k 53860
Self-aligning ball bearings
spherical plain bearing GE4E GE5E GE6E GE8E GE10E GE12E GE15ES GE17ES GE20ES GE25ES GE30ES GE35ES GE40ES GE45ES GE50ES GE60ES GE70ES GE80ES GE90ES GE1 110145 120155 130170 140180 150190 165710
Thrust ball bearing 511 234415 234416 234417 234418 234419 234420 234421 234422 234424 234426 234428 234430 234432 234438 234440 234714 234715 234716 234717 234718 234719 234720 234721 234722 234722 347262 347282 347302 347322 347382 34740
Cylindrical Roller Bearings NU313EMA NU2313EMA NU2314EMA NU415EMA NU216EMA NU2216EMA NJ2216EMA NUP2216EMA NU316EMA NU2316EMA NU217EMA NU2217EMA NU317EMA NU2317EMA NJ2317EMA NU218EMA NJ218EMA NU2218EMA NJ2218EMA NUP2218EMA NU318EMA NJ318EMA NU2318EMA NJ2318EMA NU219EMA NJ219EMA NU2219EMA NJ2219EMA NU319EMA NJ319EMA NU2319EMA NJ2319EMA NU220EMA NJ220EMA NU2220EMA NJ2220EMA NU320EMA NJ320EMA NU2320EMA NJ2320EMA NU222EMA NJ222EMA NU2222EMA NJ2222EMA NU322EMA NJ322EMA NU2322EMA NJ2322EMA NU1571MA NU224EMA NJ224EMA NU2224EMA NJ2224EMA NU324EMA NJ324EMA NU2324EMA NJ2324EMA NU1026MA NU226EMA NJ226EMA NU2226EMA NJ2226EMA NU326EMA NJ326EMA NU2326EMA NJ2326EMA NU1571MA NU228EMA NJ228EMA NU2228EMA NJ2228EMA NU328EMA NJ328EMA NU2328EMA NJ2328EMA NU1030MA NU230EMA NJ230EMA NUP230EMA NU2230EMA NJ2230EMA N2230EMB NU330EMA NJ330EMA NU2330EMA NJ2330EMA NU1032MA NU232EMA NJ232EMA NUP232EMA NU2232EMA NJ2232EMA NU332EMA NJ332EMA NU2332EMA NJ2332EMA NU1034MA NU3034EMA NU234EMA NJ234EMA NU2234EMA NJ2234EMA NU334EMA NJ334EMA NU2334EMA NJ2334EMA NU1036MA NU236EMA NJ236EMA NU2236EMA NJ2236EMA NU336EMA NJ336EMA NU2336EM NJ2336EMA NU1038MA NU238EMA NJ238EMA NU2238EMA NJ2238EMA NU338EMA NJ338EMA NU2338EMA NJ2338EMA NU1040MA NU240EMA NJ240EMA NU2240EMA NJ2240EMA NU340EMA NJ340EMA NU2340EMA NJ2340EMA NU1044MA NJ1044MA NU3044EMA NU244EMA NJ244EMA NU2244EMA NJ2244EMA NU344EMA NJ344EMA NU2344EMA NJ2344EMA N2344EMB NU1048MA NU248EMA NJ248EMA NU348EMA NJ348EMA NU2348EMA NJ2348EMA NU1052MA NU3052MA NU252MA NUP252MA NU2252MA NU2352EMA NU1056MA NU1060MA NU1964MA NF2964EMB NU1064MA NU2264MA NF2968EMB NU1068MA NU3068EMA NU3168EMA NU2372EMA NU1072MA NU1076MA NJ2980EMA NU1080MA NU2080EMA NF2984EMB NU1088MA NU2088EMA NU3188EMA NJ2892EMA NF2992EMB NU3192EMA NU1096EMA NJ1096EMA NU31/500EMA NU18/560MA NU30/600EMA NU20/630EMA NU20/670EMA NU20/670EMA NU30/670EMA NJ28/710EMA NJ29/710MA NU20/750EMA NU20/800EMA NU20/850EMA NU39/900EMA NU20/900EMA NJ18/1120EMA105RU32 105RN32 105RJ32 105RF32 105RT32 170RU51 170RN51 170RJ51 170RF51 170RT51 170RU91 170RN91 170RJ91 170RF91 170RT91 170RU93 170RN93 170RJ93 170RF93 170RT93 180RU51 180RN51 180RJ51 180RF51 180RT51 180RU91 180RN91 180RJ91 180RF91 180RT91 190RU91 190RN91 190RJ91 190RF91 190RT91 190RU92 190RN92 190RJ92 190RF92 190RT92 200RU91 200RN91 200RJ91 200RF91 200RT91 200RU92 200RN92 200RJ92 200RF92 200RT92 210RU92 210RN92 210RJ92 210RF92 210RT92 220RU51 220RN51 220RJ51 220RF51 220RT51 220RU91 220RN91 220RJ91 220RF91 220RT91 220RU92 220RN92 220RJ92 220RF92 220RT92 240RU91 240RN91 240RJ91 240RF91 240RT91 250RU91 250RN91 250RJ91 250RF91 250RT91NCF2922V NCF2924V NCF2926V NCF2928V NCF2930V NCF2932V NCF2934V NCF2936V NCF2938V NCF1840V NCF2940V NCF1844V NCF2944V NCF1852V NCF2952V NCF2960V NCF1864V NCF2964V NCF1868V NCF1876V NCF2976V NCF1880V NCF1884V NCF1888V NCF1892V NCF2992V NCF2996V NCF18/500V NCF29/500V NCF18/530V NCF18/560V NCF18/600V NCF18/630V NCF18/670V NCF18/710V NCF18/750V NCF18/800VNNU4930MAW33 NNU4932MAW33 NNU4934MAW33 NNU4936MAW33 NNU4938MAW33 NNU4940MAW33 NNU4140MAW33 NNU4944MAW33 NNU4144MAW33 NNU4948MAW33 NNU4148MAW33 NNU4952MAW33 NNU4152MAW33 NNU4956MAW33 NNU4156MAW33 NNU4960MAW33 NNU4160MAW33 NNU4964MAW33 NNU4164MAW33 NNU4968MAW33 NNU4068MAW33 NNU4168MAW33 NNU4972MAW33 NNU4072MAW33 NNU4172MAW33 NNU4976MAW33 NNU4076MAW33 NNU4176MAW33 NNU4980MAW33 NNU4080MAW33 NNU4180MAW33 NNU4984MAW33 NNU4084MAW33 NNU4184MAW33 NNU4988MAW33 NNU4088MAW33 NNU4188MAW33 NNU4992MAW33 NNU4092MAW33 NNU4192MAW33 NNU4996MAW33 NNU4096MAW33 NNU4196MAW33 NNU49/500MAW33 NNU40/500MAW33 NNU49/530MAW33 NNU40/530MAW33 NNU49/560MAW33 NNU49/600MAW33 NNU49/630MAW33 NNU49/670MAW33 NNU40/670MAW33 NNU49/710MAW33 NNU49/750MAW33 NNU49/800MAW33 NNU49/850MAW33 NNU49/900MAW33
 

Company Profile

        E-Asia was set up in 1996 and located at HangZhou, a beautiful city in China. Our company is bearing manufacturer and NSK CZPT CZPT CZPT CZPT HRB LYC NACHI C&U bearing distributor. We also provide OEM beaings.Since it was first established, E-AISA was dedicated in research, development and manufacture of bearings. Now, E-AISA has become main and 1 of the first grade suppliers of all kinds of bearings.
          Our products include: Deep Groove Ball Bearings, Self-aligning Ball Bearings, Spherical Bearings, Tapered Roller Bearings,Cylindrical Roller Bearings, Needle Roller Bearings, Self-aligning Roller Bearings, Angular Contact Ball Bearings, Thrust Ball Bearings and Trust Roller Bearings and Special Bearings.
        E-Asia is a backbone enterprise for bearing production in China. With an area of 60, 000 square meters, more than 260 sets devices and machines, and around 200 employees, our company annually turns out more than 6 million sets bearings.

        Our Bearings are exported to the USA, Canada, UK, Germany, Poland, Italy, Russia, the Middle East, Africa and other countries and regions of the world. E-Asia Bearing Co. Ltd. Is committed to the introduction of high-quality bearing products. Our company have more than 200 employees.
        Our brands include ZWZ bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings and so forth.

 
Our belief is “Specialization is quality; Quality is the future. Any product with 0.01% defect is 100% reject” is our quality policy.

Packaging & Shipping

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Auto Clutch Bearing
Material: Chrome Steel
Tolerance: P5
Certification: ISO9001, TS16949, ISO9006, QS9000, VDA6.1
Clearance: C3
ABS: Without ABS
Customization:
Available

|

Customized Request

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Slides

Linear bearings play a crucial role in ensuring the smooth movement and operation of industrial conveyors and linear slides. Their contributions are as follows:

  • Reduced Friction:

Linear bearings are designed to minimize friction between moving components, facilitating smooth motion of conveyors and linear slides. This reduces wear and tear, energy consumption, and the need for frequent maintenance.

  • Precision Movement:

Linear bearings enable precise positioning and controlled movement. This precision is vital for conveyors and slides that require accurate placement of materials, products, or components.

  • Stability and Load Distribution:

Linear bearings distribute loads evenly across the bearing surface, enhancing stability and preventing uneven wear. This is especially important for conveyors that handle varying loads and linear slides that support heavy components.

  • Quiet and Vibration-Free Operation:

Linear bearings contribute to quiet and vibration-free operation. This is crucial in environments where noise reduction and minimal vibrations are essential for the comfort of operators and the integrity of products.

  • Efficient Energy Transfer:

Linear bearings ensure efficient energy transfer by reducing energy losses due to friction. This efficiency is particularly beneficial in systems where multiple conveyors or slides are connected, improving overall system performance.

  • Longevity and Reliability:

Linear bearings enhance the longevity and reliability of conveyors and slides by reducing wear on moving parts. This results in extended operational lifespans and reduced downtime for maintenance.

  • Flexibility and Customization:

Linear bearings come in various designs and sizes, allowing for customization to suit specific conveyor or slide requirements. This adaptability is valuable for accommodating different loads and motion profiles.

  • Wide Range of Industries:

Linear bearings find application in industries such as manufacturing, logistics, packaging, and material handling, where conveyors and linear slides are essential components of the workflow.

In summary, linear bearings contribute significantly to the efficient, precise, and reliable movement of industrial conveyors and linear slides. Their ability to reduce friction, ensure stability, and support heavy loads enhances the overall performance of these systems.

linear bearing

Design Principles and Functionalities of Linear Bearings

Linear bearings are designed with specific principles to facilitate controlled linear motion along a single axis. These design principles contribute to their functionalities, making them essential components in various applications:

  • Rolling Elements:

Linear bearings typically feature rolling elements, such as balls or rollers, that move along a track or rail. These rolling elements reduce friction and enable smooth linear motion.

  • Guiding Mechanism:

Linear bearings incorporate a guiding mechanism to constrain the motion to a single axis. This guiding mechanism ensures that the linear bearing moves precisely along the desired path.

  • Load Distribution:

The design of linear bearings allows for effective distribution of loads, both in the radial and axial directions. This load distribution ensures stability and prevents excessive stress on individual components.

  • Rail or Track:

Linear bearings typically run along a rail or track that provides a smooth and accurate path for the rolling elements. The rail is designed to resist wear and maintain its precision over time.

  • Cage or Carriage:

Linear bearings use a cage or carriage to house the rolling elements and maintain their proper spacing. This arrangement ensures even load distribution and smooth movement.

  • Sealing and Lubrication:

Linear bearings often incorporate sealing mechanisms to protect the rolling elements from contaminants and to retain lubrication. Proper lubrication ensures smooth motion and extends the bearing’s lifespan.

  • Mounting Options:

Linear bearings are designed to be mounted in various ways, depending on the application’s requirements. Mounting options include flange-mounted, base-mounted, or end-supported configurations.

  • Adjustability:

Many linear bearings are designed with provisions for adjustment, allowing users to fine-tune the preload or clearance to optimize performance and minimize play.

  • Materials:

Linear bearings are constructed from materials that offer high wear resistance, durability, and corrosion resistance. Common materials include steel, stainless steel, and various engineering plastics.

  • Accessories:

Accessories such as end caps, seals, and lubrication systems can enhance the functionality and lifespan of linear bearings by providing protection and ensuring proper maintenance.

Functionalities of linear bearings include providing precise linear motion, guiding components along a defined path, minimizing friction, distributing loads, and maintaining stability. The design principles ensure reliable operation and make linear bearings indispensable in applications requiring controlled and accurate linear motion.

China wholesaler Wj831 OEM Motor/Spherical/Cylindrical/Tapered/Taper Roller Earing/Angular/Insert/Thrust/Linear/Pillow Block/Guide Rail/Ball Screw/Deep Groove Ball Bearing   bearing assemblyChina wholesaler Wj831 OEM Motor/Spherical/Cylindrical/Tapered/Taper Roller Earing/Angular/Insert/Thrust/Linear/Pillow Block/Guide Rail/Ball Screw/Deep Groove Ball Bearing   bearing assembly
editor by CX 2024-02-05

China manufacturer CZPT CZPT CZPT CZPT Motorcycle Bearing Wheel Bearing Auto Bearing Linear Bearing Angular Contact Ball Bearing Taper Roller Bearing Deep Groove Ball Bearing with Great quality

Product Description

Product Description

Our business:
1. Produce and customize various bearing brands. (we can customize your packaging according to your design and laser engrave your brand in the product. All copyright belongs to the customer. We promise not to disclose any information.)

2. Distribute the world famous bearing brands, such as: NSK,  Timken, NTN, IKO,  Nachi, CZPT HCH etc.
Our products include: deep groove ball bearings, tapered roller bearings, cylindrical roller bearings, self-aligning roller bearings, automobile bearings and thousands of other bearing models. We can also customized non-standard bearing according to customers requirements or drawings.

A wide range of applications:
• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• 2 Wheeler.

Product Name Ball bearing/roller bearing/insert bearing/Auto bearing/Linear bearing/Slide guide/needle bearing
Brand Name BDL/NTN/NSK/KOYO/NACHI/TIMKEN/IKO/HCH
Material Chrome Steel ,Stainless steel,Ceramic,Nylon
Precision Grade P0,P6,P5,P4,P2(ABEC1, ABEC3, ABEC5, ABEC7, ABEC9)
Greese SRL ,PS2, Alvania R12 ,etc
Certifications ISO 9001
Package Box,Carton,Wooden Box,Plastic Tube or Per buyers requirement .
MOQ 2PCS
Serice OEM
Sample Available
Payment Term TT or L/C or Western Union
Port HangZhou/HangZhou/ZheJiang

 

Detailed Photos

 

 

 

 

Packaging & Shipping

 

Company Profile

 

Our Advantages

Our Advantages:
1. World-Class Bearing: We provide our customers with all types of indigenous bearing with world-class quality.
2. OEM or Non-Stand Bearings: Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
3. Genuine products With Excellent Quality: The company has always proved the 100% quality products it provides with genuine intent.
4. After Sales Service and Technical Assistance: The company provides after-sales service and technical assistance as per the customer’s requirements and needs.
5. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain. 

SAMPLES
1. Samples quantity: 1-10 PCS are available. 
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to
    pay samples charge and shipping cost. 
3. It’s better to start your order with Trade Assurance to get full protection for your samples order. 

CUSTOMIZED
The customized LOGO or drawing is acceptable for us. 

MOQ
1. MOQ: 10 PCS standard bearings. 
2. MOQ: 1000 PCS customized your brand bearings. 

OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield. 
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.
 

FAQ

1.What is the minimum order quantity for this product?
    Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales,
    most customers’orders are more than 1 ton.
2.What is your latest delivery time?
    Most orders will be shipped within 7-15 days of payment being received.
3.Does your company have quality assurance?
    Yes, for 1 years.
4.What is the competitiveness of your company’s products compared to other companies?
    High precision, high speed, low noise.
5.What are the advantages of your company’s services compared to other companies?
    Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by
    customers for customs clearance or sales. 100% after-sales service.
6.Which payment method does your company support?
    Do our best to meet customer needs, negotiable.
7.How to contact us quickly?
    Please send us an inquiry or message and leave your other contact information, such as phone number,
     account or account, we will contact you as soon as possible and provide the detailed information you need.
       Please feel free to contact us, if you have any other question

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Customized
Aligning: Customized
Separated: Customized
Rows Number: Customized
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Slides

Linear bearings play a crucial role in ensuring the smooth movement and operation of industrial conveyors and linear slides. Their contributions are as follows:

  • Reduced Friction:

Linear bearings are designed to minimize friction between moving components, facilitating smooth motion of conveyors and linear slides. This reduces wear and tear, energy consumption, and the need for frequent maintenance.

  • Precision Movement:

Linear bearings enable precise positioning and controlled movement. This precision is vital for conveyors and slides that require accurate placement of materials, products, or components.

  • Stability and Load Distribution:

Linear bearings distribute loads evenly across the bearing surface, enhancing stability and preventing uneven wear. This is especially important for conveyors that handle varying loads and linear slides that support heavy components.

  • Quiet and Vibration-Free Operation:

Linear bearings contribute to quiet and vibration-free operation. This is crucial in environments where noise reduction and minimal vibrations are essential for the comfort of operators and the integrity of products.

  • Efficient Energy Transfer:

Linear bearings ensure efficient energy transfer by reducing energy losses due to friction. This efficiency is particularly beneficial in systems where multiple conveyors or slides are connected, improving overall system performance.

  • Longevity and Reliability:

Linear bearings enhance the longevity and reliability of conveyors and slides by reducing wear on moving parts. This results in extended operational lifespans and reduced downtime for maintenance.

  • Flexibility and Customization:

Linear bearings come in various designs and sizes, allowing for customization to suit specific conveyor or slide requirements. This adaptability is valuable for accommodating different loads and motion profiles.

  • Wide Range of Industries:

Linear bearings find application in industries such as manufacturing, logistics, packaging, and material handling, where conveyors and linear slides are essential components of the workflow.

In summary, linear bearings contribute significantly to the efficient, precise, and reliable movement of industrial conveyors and linear slides. Their ability to reduce friction, ensure stability, and support heavy loads enhances the overall performance of these systems.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China manufacturer CZPT CZPT CZPT CZPT Motorcycle Bearing Wheel Bearing Auto Bearing Linear Bearing Angular Contact Ball Bearing Taper Roller Bearing Deep Groove Ball Bearing   with Great qualityChina manufacturer CZPT CZPT CZPT CZPT Motorcycle Bearing Wheel Bearing Auto Bearing Linear Bearing Angular Contact Ball Bearing Taper Roller Bearing Deep Groove Ball Bearing   with Great quality
editor by CX 2024-01-09