Tag Archives: ball bearing

China factory Size 8X15X24mm Manufacturer Linear Motion Ball Bearing Lm8uu double row ball bearing

Product Description

SS6U8 SSU10 SSU12 SSU16 SSU20 SSU24 SS6U8W SSU10W SSU12W SSU16W SSU20W SSU24W SS6U8WW SSU10WW SSU12WW SSU16WW SSU20WW SSU24WW SS6UPB8 SSUPB10 SSUPB12 SSUPB16 SSUPB20 SSUPB24 SS6UPBA8 SSUPBA10 SSUPBA12 SSUPBA16 SSUPBA20 SSUPBA24 SS6UTWN8 SSUTWN10 SSUTWN12 SSUTWN16 SSUTWN20 SSUTWN24 SS6UTWNA8 SSUTWNA10 SSUTWNA12 SSUTWNA16 SSUTWN20 SSUTWNA24 SS6UFB8 SSUFB12 SSUFB20 SSUFB24 SS6UTFB8 SSUTFB12 SSUTFB16 SSUTFB20 SSUTFB24 SSU80PN SSU100PN SSU120PN SSU160PN SSU200PN SSU240PN SSU80PNW SSU100PNW SSU120PNW SSU160PNW SSU200PNW SSU240PNW SSU80PNWW SSU100PNWW SSU120PNWW SSU160PNWW SSU200PNWW SSU240PNWW SSUPB08 SSUPB571 SSUPB012 SSUPB016 SSUPB571 SSUPB571 SSUTWN08 SSUTWN571 SSUTWN012 SSUTWN016 SSUTWN571 SSUTWN571 SSURPB012 SSURPB016 SSURPB571 SUPER3 SUPER4 SUPER6 SUPER8 SUPER10 SUPER12 SUPER16 SUPER20 SUPER24 SUPER32 SUPER8-DD SUPER10-DD SUPER12-DD SUPER16-DD SCB4 SCB6 SCB8 SCB4-DD SCB6-DD SCB8-DD SCB4TWN SCB6TWN SCB8TWN SCB4TWN-DD SCB6TWN-DD SCB8TWN-DD SPB4 SPB6 SPB8 SPB10 SPB12 SPB16 SPB20 SPB24 SPB32 SPB4ADJ SPB6ADJ SPB8ADJ SPB10ADJ SPB12ADJ SPB16ADJ SPB20ADJ SPB24ADJ SPB32ADJ TWN4 TWN6 TWN8 TWN10 TWN12 TWN16 TWN20 TWN24 TWN4ADJ TWN6ADJ TWN8ADJ TWN10ADJ TWN12ADJ TWN16ADJ TWN20ADJ TWN24ADJ SFB8 SFB12 SFB16 SFB20 SFB24 TSFB8 TSFB12 TSFB16 TSFB20 TSFB24 SUPER80PN SUPER100PN SUPER120PN SUPER160PN SUPER200PN SUPER240PN SUPER320PN SUPER80PN-DD SUPER100PN-DD SUPER120PN-DD SUPER160PN-DD SPB80PN SPB100PN SPB120PN SPB160PN SPB200PN SPB240PN SPB320PN TWN80PN TWN100PN TWN120PN TWN160PN TWN200PN TWN240PN A4812 A61014 A81420 A81420-DD A101824 A122026 A122026-DD A162536 A162536-DD A203242 A243848 A324864 A406080 A487296 A6496128 ADJ81420 ADJ101824 ADJ122026 ADJ162536 ADJ203242 ADJ243848 ADJ324864 ADJ406080 ADJ487296 ADJ6496128 PB8A PB12A PB16A PB20A PB24A PB32A INST2MS1 INST3MS1 INST4MS1 INST2MS2 INST3MS2 INST4MS2 INST258SS INST369SS INST4812SS DS16 DS20 DS24 DS32 OPN81420 OPN101824

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Structure: Rod End
Material: Stainless Steel
Load Direction: Radial Spherical Plain Bearing
Add Lubricant: Self-lubricating
Outer Structure: Outer Ring of Single-Slit
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China factory Size 8X15X24mm Manufacturer Linear Motion Ball Bearing Lm8uu   double row ball bearingChina factory Size 8X15X24mm Manufacturer Linear Motion Ball Bearing Lm8uu   double row ball bearing
editor by CX 2024-05-15

China Professional High Quality China Factory Lmkm16luu Square Flange Linear Ball Bearing with high quality

Product Description

SM3 SM4 SM5 SM6 SM8 SM10 SM12 SM13 SM16 SM20 SM25 SM30 SM35 SM40 SM50 SM60 SM80 SM100 SM120 SM150 SM3G SM4G SM5G SM6G SM8G SM10G SM12G SM13G SM16G SM20G SM25G SM30G SM35G SM40G SM50G SM60G SM80G SMS3 SMS4 SMS5 SMS6 SMS8 SMS10 SMS12 SMS13 SMS16 SMS20 SMS25 SMS30 SMS35 SMS40 SMS50 SMS60 SMS80 SMS3G SMS4G SMS5G SMS6G SMS8G SMS10G SMS12G SMS13G SMS16G SMS20G SMS25G SMS30G SMS35G SMS40G SMS50G SMS60G SMS80G SM12-AJ SM13-AJ SM16-AJ SM20-AJ SM25-AJ SM30-AJ SM35-AJ SM40-AJ SM50-AJ SM60-AJ SM80-AJ SM100-AJ SM120-AJ SM150-AJ SM6G-AJ SM8G-AJ SM10G-AJ SM12G-AJ SM13G-AJ SM16G-AJ SM20G-AJ SM25G-AJ SM30G-AJ SM35G-AJ SM40G-AJ SM50G-AJ SM60G-AJ SM80G-AJ SMS12-AJ SMS13-AJ SMS16-AJ SMS20-AJ SMS25-AJ SMS30-AJ SMS35-AJ SMS40-AJ SMS50-AJ SMS60-AJ SMS6G-AJ SMS8G-AJ SMS10G-AJ SMS12G-AJ SMS13G-AJ SMS16G-AJ SMS20G-AJ SMS25G-AJ SMS30G-AJ SMS35G-AJ SMS40G-AJ SMS50G-AJ SMS60G-AJ SM12-OP SM13-OP SM16-OP SM20-OP SM25-OP SM30-OP SM35-OP SM40-OP SM50-OP SM60-OP SM80-OP SM100-OP SM120-OP SM150-OP SM10G-OP SM12G-OP SM13G-OP SM16G-OP SM20G-OP SM25G-OP SM30G-OP SM35G-OP SM40G-OP SM50G-OP SM60G-OP SM80G-OP SMS12-OP SMS13-OP SMS16-OP SMS20-OP SMS25-OP SMS30-OP SMS35-OP SMS40-OP SMS50-OP SMS60-OP SMS10G-OP SMS12G-OP SMS13G-OP SMS16G-OP SMS20G-OP SMS25G-OP SMS30G-OP SMS35G-OP SMS40G-OP SMS50G-OP SMS60G-OP SM6G-LUU SM8G-LUU SM10G-LUU SM12G-LUU SM13G-LUU SM16G-LUU SM20G-LUU SM25G-LUU SM30G-LUU SM3W SM4W SM5W SM6W SM8W SM10W SM12W SM13W SM16W SM20W SM25W SM30W SM35W SM40W SM50W SM60W SM3GW SM4GW SM5GW SM6GW SM8GW SM10GW SM12GW SM13GW SM16GW SM20GW SM25GW SM30GW SM35GW SM40GW SM50GW SM60GW SMS3W SMS4W SMS5W SMS6W SMS8W SMS10W SMS12W SMS13W SMS16W SMS20W SMS25W SMS30W SMS35W SMS40W SMS50W SMS60W SMS3GW SMS4GW SMS5GW SMS6GW SMS8GW SMS10GW SMS12GW SMS13GW SMS16GW SMS20GW SMS25GW SMS30GW SMS35GW SMS40GW SMS50GW SMS60GW SMF6 SMF8 SMF10 SMF12 SMF13 SMF16 SMF20 SMF25 SMF30 SMF35 SMF40 SMF50 SMF60 SMF80 SMF100 SMF6G SMF8G SMF10G SMF12G SMF13G SMF16G SMF20G SMF25G SMF30G SMF35G SMF40G SMF50G SMF60G SMSF6 SMSF8 SMSF10 SMSF12 SMSF13 SMSF16 SMSF20 SMSF25 SMSF30 SMSF35 SMSF40 SMSF50 SMSF60 SMSF6G SMSF8G SMSF10G SMSF12G SMSF13G SMSF16G SMSF20G SMSF25G SMSF30G SMSF35G SMSF40G SMSF50G SMSF60G SMK6 SMK8 SMK10 SMK12 SMK13 SMK16 SMK20 SMK25 SMK30 SMK35 SMK40 SMK50 SMK60 SMK80 SMK100 SMK6G SMK8G SMK10G SMK12G SMK13G SMK16G SMK20G SMK25G SMK30G SMK40G SMK50G SMK60G SMSK6 SMSK8 SMSK10 SMSK12 SMSK13 SMSK16 SMSK20 SMSK25 SMSK30 SMSK35 SMSK40 SMSK50 SMSK60 SMSK6G SMSK8G SMSK10G SMSK12G SMSK13G SMSK16G SMSK20G SMSK25G SMSK30G SMSK35G SMSK40G SMSK50G SMSK60G SMT6UU SMT8UU SMT10UU SMT12UU SMT13UU SMT16UU SMT20UU SMT25UU SMT30UU SMT6GUU SMT8GUU SMT10GUU SMT12GUU SMT13GUU SMT16GUU SMT20GUU SMT25GUU SMT30GUU SMST6UU SMST8UU SMST10UU SMST12UU SMST13UU SMST16UU SMST20UU SMST25UU SMST30UU SMST6GUU SMST8GUU SMST10GUU SMST12GUU SMST13GUU SMST16GUU SMST20GUU SMST25GUU SMST30GUU SMF6UU-E SMF8UU-E SMF10UU-E SMF12UU-E SMF13UU-E SMF16UU-E SMF20UU-E SMF25UU-E SMF30UU-E SMF35UU-E SMF40UU-E SMF50UU-E SMF60UU-E SMF6GUU-E SMF8GUU-E SMF10GUU-E SMF12GUU-E SMF13GUU-E SMF16GUU-E SMF20GUU-E SMF25GUU-E SMF30GUU-E SMF35GUU-E SMF40GUU-E SMF50GUU-E SMF60GUU-E SMSF6UU-E SMSF8UU-E SMSF10UU-E SMSF12UU-E SMSF13UU-E SMSF16UU-E SMSF20UU-E SMSF25UU-E SMSF30UU-E SMSF6GUU-E SMSF8GUU-E SMSF10GUU-E SMSF12GUU-E SMSF13GUU-E SMSF16GUU-E SMSF20GUU-E SMSF25GUU-E SMSF30GUU-E SMK6UU-E SMK8UU-E SMK10UU-E SMK12UU-E SMK13UU-E SMK16UU-E SMK20UU-E SMK25UU-E SMK30UU-E SMK35UU-E SMK40UU-E SMK50UU-E SMK60UU-E SMK6GUU-E SMK8GUU-E SMK10GUU-E SMK12GUU-E SMK13GUU-E SMK16GUU-E SMK20GUU-E SMK25GUU-E SMK30GUU-E SMK35GUU-E SMK40GUU-E SMK50GUU-E SMK60GUU-E SMSK6UU-E SMSK8UU-E SMSK10UU-E SMSK12UU-E SMSK13UU-E SMSK16UU-E SMS20KUU-E SMSK25UU-E SMSK30UU-E SMSK6GUU-E SMSK8GUU-E SMSK10GUU-E SMSK12GUU-E SMSK13GUU-E SMSK16GUU-E SMSK20GUU-E SMSK25GUU-E /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Structure: Rod End
Material: Stainless Steel
Load Direction: Radial Spherical Plain Bearing
Add Lubricant: Self-lubricating
Outer Structure: Outer Ring of Single-Slit
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China Professional High Quality China Factory Lmkm16luu Square Flange Linear Ball Bearing   with high qualityChina Professional High Quality China Factory Lmkm16luu Square Flange Linear Ball Bearing   with high quality
editor by CX 2024-05-14

China OEM CZPT Best Price List Linear Ball Bearing for Smith Machine Lm12uu Bearing Liner Motion Bearing Linear Bush Bushings for CNC supplier

Product Description

Detailed Photos

 

Linear bearing is a linear motion system, which is used for the combination of linear stroke and cylindrical shaft. Because of the contact between the bearing ball and the outer point of the bearing, the steel ball rolls with the minimum friction resistance, so the linear bearing has small friction and is stable, and does not change with the bearing speed, so the linear motion with high sensitivity and high precision can be obtained. Linear bearing consumption also has its limitations, the most important is the bearing impact load capacity is poor, and the bearing capacity is poor, and secondly, linear bearing in high speed vibration and noise

Product Detail

Product name

Linear bearing 

Brand Name

your request

Material

Chrome Steel bearing steel Gcr15

Model Number

LMF8UU

Feature

High Accuracy

Quality Guarantee

One year

Customized

OEM avalialbe

Products packing

According to our customer’s request,Plastic bag+inner box.

   

MAIN PRODUCTS

Tapered roller bearings, cylindrical roller bearings, ball bearings, self-aligning roller bearings, base bearings, car hub bearings,

truck hub bearings and other products, We can customize the bearing according to the drawings or samples provided by the customer

FIELDS OF APPLICATION

Grain machinery, textile machinery, washing machinery, engineering machinery, industrial deceleration machinery, woodworking

machinery,papermaking machinery, mining machinery, coal mining machinery, lifting machinery, construction machinery,
large transportation equipment,chemical machinery, petroleum machinery, metallurgical industry, large steel mills, cement plants,
energy industry, automobiles, trucks, etc.

Packaging & Shipping

Plastic bag + single box + carton + tray;Industrial packaging + carton + pallet;

We also can According to your requirements to change.

Company Profile

HangZhou CZPT Trading Co., Ltd. was founded in August 2014. It is a bearing manufacturer integrating research, development and sale of bearings, with a floor area of 18,000 square meters and a plant area of 4,800 square meters. The company has a state-level enterprise technology center and a number of provincial high-tech enterprises with strong technical strength. our company was honored as competitive brand in the market.

Equipped with modern production equipment and advanced detection instruments, the company specially produces Bearings including 3 varieties of spherical roller bearings, namely cylindrical roller bearings, tapered roller bearings and thrust
spherical roller bearings, Automobile Hub Bearing,to replace imported high-end products.

With precision of grade P0, grade P6 P5 P4, we bearings are widely used in complete products in metallurgical, mining,
petroleum, chemical, coal, cement, papermaking, wind power, heavy machinery, engineering machinery and port machinery industries. With self-run import & export rights, it sells its products not only across China, but also in tens of other countries and areas such as the United States, Canada, Italy, Russia, German and South Africa.

We would like to serve the customers around the world with our trustworthy products, reasonable price and attentive service.
The leading products of the company cover 3 main categories which include more than 3,000 types of bearing products.

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale
sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
If the goods are in stock, usually 5-10 days. Or if the goods are not in stock, it is 15-20 days, which is based
on the quantity.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required
by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
50% deposit,balance payment before delivery.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number,
account or account, we will contact you as soon as possible.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Double
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Managing Contamination and Debris in Linear Bearings

Contamination and debris pose significant challenges to the proper functioning of linear bearings. However, various measures are employed to effectively manage these issues:

  • Preventive Sealing:

Linear bearings are often equipped with protective seals that act as barriers against contaminants. These seals prevent dust, dirt, and other particles from entering the bearing housing, thus reducing the risk of contamination.

  • Shielding:

Linear bearings can incorporate shields that offer an additional layer of protection against debris. Shields are designed to keep larger particles away from the bearing’s rolling elements, enhancing the bearing’s longevity.

  • Wipers and Scrapers:

Some linear bearings feature wipers or scrapers that actively remove debris from the bearing’s moving parts. These components help prevent the accumulation of contaminants that could compromise performance.

  • Regular Maintenance:

Periodic inspection and cleaning are crucial to maintaining the cleanliness of linear bearings. Routine maintenance procedures help identify and remove any foreign particles that may have entered the bearing housing.

  • Clean Environment:

Creating a clean operating environment is essential. In applications where contamination is a concern, steps are taken to minimize the presence of dust, dirt, and other pollutants in the vicinity of the linear bearings.

  • Proper Lubrication:

Lubrication not only reduces friction but also creates a barrier against contaminants. The lubricant can help prevent particles from adhering to bearing surfaces, facilitating their removal during maintenance.

  • Regular Inspections:

Frequent visual inspections can help identify early signs of contamination. Timely detection allows for prompt cleaning and maintenance, preventing further damage.

  • Appropriate Sealing Materials:

Using high-quality sealing materials that are resistant to wear and tear is essential. The right materials can effectively keep contaminants out while withstanding the operating conditions.

  • Choosing Suitable Environment:

Where possible, placing linear bearings in environments with lower levels of contamination or installing additional protective measures can help manage debris-related challenges.

By implementing these strategies, engineers and operators can effectively manage the challenges associated with contamination and debris, ensuring the optimal performance and longevity of linear bearings.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China OEM CZPT Best Price List Linear Ball Bearing for Smith Machine Lm12uu Bearing Liner Motion Bearing Linear Bush Bushings for CNC   supplierChina OEM CZPT Best Price List Linear Ball Bearing for Smith Machine Lm12uu Bearing Liner Motion Bearing Linear Bush Bushings for CNC   supplier
editor by CX 2024-05-14

China wholesaler China Manufacturer Low Price Linear Grb Roller Guide Rails Bearing for CNC Kit double row ball bearing

Product Description

Product Description

GZB roller linear CZPT uses the roller to replace the ball, and the contact mode between the rollers and the raceway changes from point contact to linear contact, which greatly improves the rigidity of the rolling linear CZPT and enables the machine to maintain higher accuracy.GZB roller heavy loading linear CZPT contact angle between roller and raceway is 45°, so it has equal load in 4 directions.Roller cage prevents roller deflecting motion and moves stably. At the same time, it forms the oil film contact between roller and cage, avoid friction among rollers, reduce the heat roller and cage, avoid friction among rollers, reduce the heat precision movement.
 

Brand AZI China
Model GGB,GZB,GGY,GGC
Style With Flange or not
Accuracy 1,2,.3,4,5
Packing Cartons or wooden boxes
Delivery time 10~45days
Samples According to customer needs

Ball type:GZB25 – GZB125
Normal accuracy is interchangeable
Maximum motion accuracy 0.004/1000
Can meet the fast delivery
Max. Single length 6m
Max. single block load capacity is 192 tons
It’s widely used in power tool,spinning lathe,make-up machine and other heavy equipments

Product Parameters

Structure

Scope of application

Machining center,NC Lathe machine Grinding machine,Heavy machine.

GZB BA/BAL Rail size

Spec. Dimension of saaembly Dimension of rail Smallest end size Rail weight
H W1 B H0 dxD1xh F Max. single length Lmax a kg/m
GZB25BA
GZB25BAL
40 12.5 23 24 7x11x9 30 6000 10 3.2
GZB30BA
GZB30BAL
45 16 28 29.5 9x14x12 40 6000 13 4.5
GZB35BA
GZB35BAL
55 18 34 31.2 9x14x12 40 6000 13 5.9
GZB45BA
GZB45BAL
70 20.5 45 38 14x20x17 52.5 6000 15 10
GZB55BA
GZB55BAL
80 23.5 53 44 16x23x20 60 6000 15 13.3
GZB65BA
GZB65BAL
90 31.5 63 55 18x26x22 75 6000 20 20.3
GZB85BAL 110 35.5 85 73 24x35x28 90 6000 25 35.2
GZB100BAL 120 50 100 80 26x39x32 105 6000 30 46.8
GZB125BAL 160 57.5 125 115 33x48x45 120 6000 35 84.6

GZB BA/BAL Block size

Spec. Dimension of block Dynamic load rating Static load rating Block weight
k W L4 CW L Mxh1 T L2 H1 C(kN) C0(kN) kg
GZB25BA
GZB25BAL
35.5 48 100
120.4
35 35
50
M6x8 9.5 66
86.4
4.5 27.7
33.4
57.1
73.4
0.5
0.7
GZB30BA
GZB30BAL
39 60 109.8
131.8
40 40
60
M8x10 10 71
93
6 38.9
49
82.5
104.5
0.8
1.1
GZB35BA
GZB35BAL
48.5 70 124
151.5
50 50
72
M8x12 12.5 79
106.5
6.5 57.9
73
106
141.9
1.4
1.7
GZB45BA
GZB45BAL
62 86 154.6
188.8
60 60
80
M10x18 15 107.6
141.8
8 92.6
116
179
230.9
3
4
GZB55BA
GZB55BAL
70 100 178.3
226.6
75 75
95
M12X18 18 125.5
173.8
10 130
168
258
360
3.8
5.1
GZB65BA
GZB65BAL
76 126 219.2
279.2
76 70
120
M16x20 23 147
207
14 212
275
378.8
530.4
6.3
8.9
GZB85BAL 95 156 349 100 140 M18x25 30 254 15 460 945.2 14.7
GZB100BAL 105 200 394 130 200 M20x27 33 286 15 547 1330 24.5
GZB125BAL 135.5 240 491 184 205 M24x30 40 360 24.5 1040 1924 84.6

If you have any needs,pls feel free to contact us and we will send you our catalog for reference.

Main Products

Company Profile

FAQ

1. Why choose AZI China?
With more than 60 years of production experience, quality assurance,factory directly price.

2. What is your main products ? 
Our Main products are consist of ball screw,linear guide,arc linear guide,ball spline and ball screw linear CZPT rail module.

3. How to Custom-made (OEM/ODM)?
If you have a product drawing or a sample, please send to us, and we can custom-made the as your required. We will also provide our professional advices of the products to make the design to be more realized & maximize the performance.

4. When can I get the quotation?
We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price,please call us or tell us in your email so that we will regard your inquiry priority.

5. How can I get a sample to check the quality?
We quote according to your drawing, the price is suitable, sign the sample list.

6Whats your payment terms?
Our payment terms is 30% deposit,balance against receiving copy of B/L or L/C sight.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane
Material: 100cr6
Carrying Capacity: Customized
Running Mode: Moving
Feature: Insulating, Antiseptic
Certification: ISO 9001:2000
Samples:
US$ 10/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Slides

Linear bearings play a crucial role in ensuring the smooth movement and operation of industrial conveyors and linear slides. Their contributions are as follows:

  • Reduced Friction:

Linear bearings are designed to minimize friction between moving components, facilitating smooth motion of conveyors and linear slides. This reduces wear and tear, energy consumption, and the need for frequent maintenance.

  • Precision Movement:

Linear bearings enable precise positioning and controlled movement. This precision is vital for conveyors and slides that require accurate placement of materials, products, or components.

  • Stability and Load Distribution:

Linear bearings distribute loads evenly across the bearing surface, enhancing stability and preventing uneven wear. This is especially important for conveyors that handle varying loads and linear slides that support heavy components.

  • Quiet and Vibration-Free Operation:

Linear bearings contribute to quiet and vibration-free operation. This is crucial in environments where noise reduction and minimal vibrations are essential for the comfort of operators and the integrity of products.

  • Efficient Energy Transfer:

Linear bearings ensure efficient energy transfer by reducing energy losses due to friction. This efficiency is particularly beneficial in systems where multiple conveyors or slides are connected, improving overall system performance.

  • Longevity and Reliability:

Linear bearings enhance the longevity and reliability of conveyors and slides by reducing wear on moving parts. This results in extended operational lifespans and reduced downtime for maintenance.

  • Flexibility and Customization:

Linear bearings come in various designs and sizes, allowing for customization to suit specific conveyor or slide requirements. This adaptability is valuable for accommodating different loads and motion profiles.

  • Wide Range of Industries:

Linear bearings find application in industries such as manufacturing, logistics, packaging, and material handling, where conveyors and linear slides are essential components of the workflow.

In summary, linear bearings contribute significantly to the efficient, precise, and reliable movement of industrial conveyors and linear slides. Their ability to reduce friction, ensure stability, and support heavy loads enhances the overall performance of these systems.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China wholesaler China Manufacturer Low Price Linear Grb Roller Guide Rails Bearing for CNC Kit   double row ball bearingChina wholesaler China Manufacturer Low Price Linear Grb Roller Guide Rails Bearing for CNC Kit   double row ball bearing
editor by CX 2024-05-14

China supplier Rowing-Machine Plastic Coated Bearing China Csk25 Linear Flat Needle Roller Bearings deep groove ball bearing

Product Description

China Machine Bearings Sch87 CSK12P-2RS Open Type Drawn Cup Needle Roller Bearings

Product Description

Needle bearings are roller bearings with cylindrical rollers that are thin and long relative to their diameter. Such rollers are called needle rollers. Despite having a small cross-section, the bearing still has a high load-bearing capacity. Needle roller bearings are equipped with thin and long rollers (roller diameter D≤5mm, L/D≥2.5, L is the length of the roller), so The radial structure is compact, and its inner diameter size and load capacity are the same as other types of bearings, and its outer diameter is the smallest, especially suitable for support structures with limited radial installation dimensions.

Depending on the application occasion, a bearing without an inner ring or a needle roller and cage assembly can be selected. At this time, the journal surface and the housing hole surface matched with the bearing are directly used as the inner and outer rolling surfaces of the bearing. In order to ensure the load capacity and running performance As with bearings with rings, the hardness, machining accuracy, and surface quality of the raceway surface of the shaft or housing hole should be similar to the raceway of the bearing ring. This kind of bearing can only bear radial load

In addition to those listed in the catalog, bearings that can be used for general engineering, such as open-type drawn cup needle roller bearings (1), closed-type drawn cup needle roller bearings
(2), needle roller bearing with inner ring
(3) and needle roller bearings without inner ring/needle roller bearings without inner ring and without a cage
(4), with cage and without cage filled with needle roller bearings

A combined needle roller bearing is a bearing unit composed of radial needle roller bearing and thrust bearing components. It has a compact structure, small size, high rotation accuracy, and can withstand a certain axial load while bearing a high radial load. And the product structure is diverse, widely adaptable, and easy to install. Combined needle roller bearings are widely used in various mechanical equipment such as machine tools, metallurgical machinery, textile machinery, and printing machinery, and can make the mechanical system design very compact and smart

Thrust bearings consist of thrust cage assemblies with needle rollers or cylindrical rollers or balls and thrust washers. Needle rollers and cylindrical rollers are held and guided by thrust cages. When used with different series of DF thrust bearing washers, many different combinations are available for bearing configurations. Due to the selection of high-precision cylindrical rollers (needle rollers) to increase the contact length, this bearing can obtain high load capacity and high rigidity in a small space. Another advantage is that if the surface of the adjacent part is suitable for the raceway surface, the gasket can be omitted, which can make the design compact. The cylindrical surfaces of the needle rollers and cylindrical rollers used in DF thrust needle roller bearings and thrust cylindrical roller bearings are Modified face to reduce edge stress and increase service life

Product Parameters

Product Name Needle Bearing 
Brand Name HOTE BEARING
Type Inch Tapered Roller Bearing/Taper Roller Bearing
Weight Standard weight
Specifications Standard size 
Material Chrome steel GCR-15
CAGE Steel Cage and Nylon Cage
Rolling body Roller

 

 

Designation Bearing Series   Dimensions Mass Load Rating Torque Rating  Limiting Speed
d (mm) D (mm) L (mm) (kg) Dynamic(kN) Static(kN) (N·m) (RPM)
CSK8        8 22 9 0.015 3.28 0.86 5 15000
CSK12   CSK12 P   6201 12 32 10 0.04 6.1 2.77 18.6 10000
CSK15   CSK15 P CSK15 PP  6202 15 35 11 0.06 7.4 3.42 34 8400
CSK17  CSK17 P CSK17 PP  6203 17 40 12 0.07 7.9 3.8 60 7350
CSK20 CSK20 P CSK20 PP  6204 20 47 14 0.11 9.4 4.46 100 6000
CSK25   CSK25 P CSK25 PP  6205 25 52 15 0.14 10.7 5.46 170 5200
CSK30   CSK30 P CSK30 PP  6206 30 62 16 0.21 11.7 6.45 276 4200
CSK35   CSK35 P CSK35 PP  6207 35 72 17 0.3 12.6 7.28 350 3600
CSK40  CSK40 P CSK40 PP   –   40 80 22 0.5 15.54 12.25 650 3000
CSK8 2RS        –   8 22 9 0.015 3.28 0.86 5 15000
CSK12 2RS CSK12P-2RS    –   12 32 14 0.05 6.1 2.77 18.6 10000
CSK15 2RS  CSK15P-2RS    –   15 35 16 0.07 7.4 3.42 34 8400
CSK17 2RS  CSK17P-2RS    –   17 40 17 0.09 7.9 3.8 60 7350
CSK20 2RS CSK20P-2RS    –   20 47 19 0.145 9.4 4.46 100 6000
CSK25 2RS CSK25P-2RS    –   25 52 20 0.175 10.7 5.46 170 5200
CSK30 2RS  CSK30P-2RS    –   30 62 21 0.27 11.7 6.45 276 4200
CSK35 2RS  CSK35P-2RS    –   35 72 22 0.4 12.6 7.28 350 3600
CSK40 2RS CSK40P-2RS    –   40 80 27 0.6 15.54 12.25 650 3000

Detailed Photos

 

FAQ

Q1:What is your Before-sales Service?
1>. Offer to bear related consultation about technology and application;

2>.Help customers with bearing choice, clearance configuration, product” life, and reliability analysis;

3>. Offer highly cost-effective and complete solution program according to site conditions;

4>. Offer localized program on introduced equipment to save running cost

Q2: What is your After-sales Service?
1>. Offer training about bearing installation and maintenance;

2>.Help customers with trouble diagnosis and failure analysis;

3>. Visit customers regularly and feedback on their rational suggestions and requirements to the company.

Q3: How about your company’s strength?
1>.FREE SAMPLES:
contact us by email or trade manager, we will send the free samples according to your request. 

2>. World-Class Bearing:
We provide our customers with all types of indigenous roller bearings of world-class quality.

3>.OEM or Non-Stand Bearings: 
Any requirement for Non-standard roller bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 

4>.Genuine products With Excellent Quality: 
The company has always proved the 100% quality products it provides with genuine intent.

5>. After-Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.

6>.Quick Delivery: 
The company provides just-in-time delivery with its streamlined supply chain.

7>.Cost Saving: 
We provide long-life, shock-resistant, and high-reliability roller bearings with excellent quality and better performance.
Resulting in increased cost savings.

Q4: What will we do if you are not satisfied with the product?
A: If have any abnormal, Please contact us at first time, and we will immediately process

Q5: How long will you respond to our problems?
A: We will respond within 1 hour. 24 hours to solve your problem

Q6: Is optional lubrication provided?
A: We can offer a wide range of oils and greases for a variety of applications. Please contact our engineer for technical
assistance with any special requirements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: Without Cage
Rows Number: Multiple
Load Direction: Thrust Bearing
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China supplier Rowing-Machine Plastic Coated Bearing China Csk25 Linear Flat Needle Roller Bearings   deep groove ball bearingChina supplier Rowing-Machine Plastic Coated Bearing China Csk25 Linear Flat Needle Roller Bearings   deep groove ball bearing
editor by CX 2024-05-13

China Best Sales Ssu16opn Linear Ball Bearing High Seed Bushing Bearing double row ball bearing

Product Description

Linear Bushing Bearing 
SSU16OPN

Product Feature & Application

Key attributes

Industry-specific attributes

Type

Linear bearing

 

Precision Rating

P2

 

Seals Type

ZZ

 

Other attributes

Applicable Industries

Machinery Repair Shops, Retail

 

Place of Origin

ZheJiang , China

 

Model Number

SSU16OPN

 

Material

Bearing steel

 

Application

Assembly machine

 

Package

Original package

 

Product name

SSU16OPN

 

Brand

CZPT or other

 

Weight

0.467kg

 

Packaging and delivery

Packaging Details

1. Industrial Package: kraft paper + cartons + wooden case pallets
2. Industrial packing: plastic tube + cartons + wooden case pallets
3. Industrial packing: Kraft paper + plastic + PE film + wooden case pallets
4. According to your requirements

 

Package Type:

A. Plastic tubes Pack + Carton + Wooden Pallet
B. Roll Pack + Carton + Wooden Pallet
C. Individual Box +Plastic bag+ Carton + Wooden Pallet

 

attribute-list

Supply Ability

10000 Piece/Pieces per Month

 

Lead time

Quantity (pieces) 1 – 1000                  > 1000
Lead time (days) 7-10 To be negotiated

 

Detailed Photos

Packaging & Shipping

After Sales Service

FAQ

Why our bearing is better than other?
Material
We usually use bearing steel (GCr15), but many manufacturers only use softer carbon steel materials, so our bearings have higher hardness and longer service life.

Heat treatment
We have our own heat treatment plant and do not need to be outsourced. We use a slower speed and more stable temperature to effectively control the steel and increase the toughness and life of the steel.
Other small-scale bearing companies usually need to outsource. Many outsourcing factories only strengthen the hardness of the bearing surface due to cost factors, but the hardness inside is not enough, which is the reason why many bad bearings are easy to crack.

Precision
Our bearings can be controlled at a height accuracy of 0~-0.004mm, fast speed and smoothness.

Multiple grinding process
We grind the bearing many times, but others may grind it only once, so the chamfer of our bearing is very smooth.

In conclusion
We use high-quality materials and multiple grinding processes, so our bearings have the characteristics of high speed, low noise,high precision and long life.

Quality guarantee
we give our customers 1 year quality warrantee for the bearings
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: High Speed
Function: Super
Flange Shape: Circular
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China Best Sales Ssu16opn Linear Ball Bearing High Seed Bushing Bearing   double row ball bearingChina Best Sales Ssu16opn Linear Ball Bearing High Seed Bushing Bearing   double row ball bearing
editor by CX 2024-05-08

China factory Spare Parts Linear Car Accessories  Bearing Housing Wheel Hub Assembly Wheel Hub Hub Unit Hub Unit Slewing Ring Thrust Ball Bearing Self-Aligning Ball F-43278 drive shaft bearing

Product Description

The automobile differential can make the left and right (or front and rear) driving wheels rotate at different speeds. It is mainly composed of left and right half shaft gears, 2 planetary gears and gear carrier. The function is to make the left and right wheels roll at different speeds when the car turns or runs on uneven roads, that is, to ensure that the driving wheels on both sides make pure rolling movement.
Printing machinery bearings are used for the bearing arrangement of the main drum of lithographic press and web press. Their excellent bearing capacity, stiffness, accuracy and accurate adjustment performance can meet the core requirements of perfect support of printing machinery, that is, the requirements of the highest printing quality. These bearings are specially designed by printing machinery manufacturers in close cooperation with our application technicians. Therefore, they can well meet the needs of customers. Matching design for specific machine schemes is very important, because too high requirements are a waste of resources, and too low requirements will reduce the performance of the machine.

F-25712.3 F-43278 F-553337.01 93*65*54 F-559490.LWTX
F-207813 F-4346.04.ZARI F-553393.01.RMSE F-559605.RTL
F-208089.02.NUKR F-52048.01.KR F-553480.01RMSE F-560425.PWKR
F-208822-571.K.NAO/.01.KSGS F-551902.FDS F-557487.HKSGT-M/01 F-87592.03.NUKR
F-229571.04.PWKR  F-552230.ARRE F-557676.AX F-89966.02.KRV
F-229817.01.PWKR F-552562-0571.RMS.RMSE F-557829.BZ F-90492.01.NUTR
F-229817.PWKR F-552962.HK-HLD F-557893.01.                AXK-HLA/0-10 F-94474.01.NUKR
F-229818.01.PWKR F-553089.BZ F-55801.01.GKB F-94632.RH
F-22985.01.RLF F-553258.AX F-55801.GKB F-34363.IR
F-233282.01.NUTR F-553259.AX F-558089.01.NU F-34512.AU
F-27991.03.NKIA F-553260.03 AX F-558472 FRM F-42446.01.KR
F-33955.RNAO F-553261.04.AX F-558706.AX F-55927.RNA
F-553263.AX F-553262.01.AX F-558867.01-.01.FRM-M/01

ZheJiang REET BEARING.CO.,LTD is a professional bearing manufacturer and exporter.
We have a wealth of technical.All producing processes are finished in our manufactory. As an ISO9001:2000 certified manufacturer,we will solve various problems in application and use of our bearings. 
Our company is an authorized distributor of FAG, INA, CZPT and other world brand bearings.Our company has the right to self-export bearings and launches its own brand RTB.
Our bearing had been exported to more than 20 countries worldwide and are warmly welcomed.
We’re looking forward to your order.
FAQ

1.Is the company a production factory or a trading company?
ZheJiang REET BEARING CO.,LTD is a manufacturing enterprise focusing on bearings and integrating research, production and sales.

2.How many the MOQ of your company?
Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

3.Does the company accept OEM or customized bearings?
In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

4.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

5.What are the company’s delivery terms?
We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Double
Load Direction: Radial Bearing
Style: With Outer Ring
Material: Bearing Steel
Type: Open
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Contribution of Linear Bearings to CNC Machining Efficiency and Accuracy

Linear bearings play a crucial role in enhancing the efficiency and accuracy of Computer Numerical Control (CNC) machining processes. Here’s how they contribute:

  • 1. Enhanced Precision:

Linear bearings provide smooth and precise linear motion along machine axes. This precision is essential for achieving tight tolerances and accurate dimensions in machined parts.

  • 2. Reduced Friction and Wear:

Low friction in linear bearings minimizes energy loss and heat generation during movement. This reduces wear on the components and extends the lifespan of the machine, resulting in consistent performance over time.

  • 3. Smooth Motion Control:

Linear bearings enable controlled and predictable motion, allowing CNC machines to execute complex tool paths with smooth transitions. This is crucial for producing intricate shapes and achieving high-quality surface finishes.

  • 4. Minimized Vibration and Noise:

The smooth operation of linear bearings reduces vibration and noise levels during machining. This is especially important for maintaining a stable machining environment and producing parts with minimal surface imperfections.

  • 5. Rapid Traverse Speeds:

Linear bearings facilitate rapid movements of machine components between machining operations. This increases the efficiency of the machining process, reducing cycle times and increasing overall productivity.

  • 6. High Acceleration and Deceleration:

Linear bearings allow CNC machines to accelerate and decelerate rapidly without sacrificing precision. This capability is advantageous for optimizing machining time while maintaining accuracy.

  • 7. Improved Repeatability:

Linear bearings ensure consistent and repeatable motion, resulting in parts that match design specifications precisely across multiple production runs.

  • 8. Flexibility in Design:

Linear bearings enable the design of compact and space-efficient CNC machines. Their small footprint allows for more efficient use of manufacturing floor space.

In summary, linear bearings significantly enhance CNC machining by providing accurate, smooth, and controlled motion. This translates into higher precision, reduced wear, improved surface finishes, and increased productivity. Whether it’s milling, turning, or other CNC processes, linear bearings are essential for achieving the level of accuracy and efficiency demanded by modern manufacturing.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Factors to Consider When Selecting a Linear Bearing

Choosing the right linear bearing for a specific application involves considering several critical factors to ensure optimal performance and longevity:

  • Load Requirements:

Determine the magnitude and direction of the loads the linear bearing will experience. Consider both static and dynamic loads to select a bearing with an appropriate load capacity.

  • Precision and Accuracy:

For applications requiring precise positioning, choose linear bearings with high precision and low backlash. Factors like repeatability and positional accuracy are crucial.

  • Speed and Acceleration:

Consider the speed and acceleration at which the linear bearing will operate. Higher speeds may require bearings with lower friction and better heat dissipation.

  • Environmental Conditions:

Assess the environmental factors such as temperature, humidity, and exposure to contaminants. Choose linear bearings with suitable materials and seals to withstand the conditions.

  • Space Constraints:

Take into account the available space for mounting the linear bearing. Some applications may have limited space, necessitating compact and lightweight bearing options.

  • Maintenance Requirements:

Consider the maintenance needs of the bearing. Bearings with self-lubricating properties or easy access for lubrication can reduce maintenance frequency.

  • Mounting and Configuration:

Choose a linear bearing that can be easily mounted and integrated into your system’s design. Consider factors like mounting orientation and available mounting surfaces.

  • Life Expectancy:

Estimate the expected lifespan of the linear bearing based on the application’s requirements. Select a bearing with a suitable design life to prevent premature failures.

  • Cost and Budget:

Balance the desired performance with the available budget. Opt for linear bearings that provide the necessary features without exceeding cost limitations.

  • Accessories and Add-ons:

Consider any additional accessories or add-ons, such as seals, lubrication systems, or end caps, that can enhance the bearing’s performance and protection.

  • Manufacturer and Supplier:

Choose reputable manufacturers and suppliers that offer reliable products and good customer support. Quality assurance and technical assistance are essential.

Overall, a comprehensive assessment of these factors will help you select the most suitable linear bearing for your specific application, ensuring optimal performance, longevity, and cost-effectiveness.

China factory Spare Parts Linear Car Accessories  Bearing Housing Wheel Hub Assembly Wheel Hub Hub Unit Hub Unit Slewing Ring Thrust Ball Bearing Self-Aligning Ball F-43278   drive shaft bearingChina factory Spare Parts Linear Car Accessories  Bearing Housing Wheel Hub Assembly Wheel Hub Hub Unit Hub Unit Slewing Ring Thrust Ball Bearing Self-Aligning Ball F-43278   drive shaft bearing
editor by CX 2024-05-06

China best Low Vibration Lmb 122026 Slide Ball Bearing Linear Bearing Lmb122026 with Best Sales

Product Description

MAM30OPN MAM40OPN MAM12OPNW MAM16OPNW MAM20OPNW MAM25OPNW MAM30OPNW MAM40OPNW MAM12OPNWW MAM16OPNWW MAM20OPNWW MAM25OPNWW MAM30OPNWW MAM40OPNWW SPM08 SPM12 SPM16 SPM20 SPM25 SPM30 SPM40 SPM50 SPM08W SPM12W SPM16W SPM20W SPM25W SPM30W SPM40W SPM50W SPM08WW SPM12WW SPM16WW SPM20WW SPM25WW SPM30WW SPM40WW SPM50WW SPM12OPN SPM16OPN SPM20OPN SPM25OPN SPM30OPN SPM40OPN SPM50OPN SPM12OPNW SPM16OPNW SPM20OPNW SPM25OPNW SPM30OPNW SPM40OPNW SPM50OPNW SPM12OPNWW SPM16OPNWW SPM20OPNWW SPM25OPNWW SPM30OPNWW SPM40OPNWW SPM50OPNWW SPPBM08 SPPBM12 SPPBM16 SPPBM20 SPPBM25 SPPBM30 SPPBM40 SPPBM50 SPPBAM008 SPPBAM12 SPPBAM16 SPPBAM20 SPPBAM25 SPPBAM30 SPPBAM40 SPPBAM50 SPPB0M12 SPPB0M16 SPPB0M20 SPPB0M25 SPPB0M30 SPPB0M40 SPPB0M50 SPPB0AM12 SPPB0AM16 SPPB0AM20 SPPB0AM25 SPPB0AM30 SPPB0AM40 SPPB0AM50 SPTWNM08 SPTWNM12 SPTWNM16 SPTWNM20 SPTWNM25 SPTWNM30 SPTWNM40 SPTWNM50 SPTWNAM08 SPTWNAM12 SPTWNAM16 SPTWNAM20 SPTWNAM25 SPTWNAM30 SPTWNAM40 SPTWNAM50 SPTWN0M12 SPTWN0M16 SPTWN0M20 SPTWN0M25 SPTWN0M30 SPTWN0M40 SPTWN0M50 SPTWN0AM12 SPTWN0AM16 SPTWN0AM20 SPTWN0AM25 SPTWN0AM30 SPTWN0AM40 SPTWN0AM50 PRM08 PRM12 PRM16 PRM20 PRM25 PRM30 PRM40 PRJ16 PRJ20 PRJ25 PRJ30 PRJ40 WRM08 WRM12 WRM16 WRM20 WRM25 WRM30 WRM40 WRJ16 WRJ20 WRJ25 WRJ30 WRJ40 SM08 SM12 SM16 SM20 SM25 SM30 SM40 SM8ADJ SM12ADJ SM16ADJ SM20ADJ SM25ADJ SM30ADJ SM40ADJ SM12OPN SM16OPN SM20OPN SM25OPN SM30OPN SM40OPN SR8 SR10 SR12 SR16 SR20 SR24 SR32 SR8-PD SR10-PD SR12-PD SR16-PD SR20-PD SR24-PD SR32-PD LSR-8 LSR-10 LSR-12 LSR-16 LSR-20 LSR-24 LSR-32 LSR-40 LSR-48 LSR-64 LSR-8-PD LSR-10-PD LSR-12-PD LSR-16-PD LSR-20-PD LSR-24-PD LSR-32-PD LSR-40-PD LSR-48-PD LSR-64-PD XSR32 XSR48 SRA-8 SRA-10 SRA-12 SRA-16 SRA-20 SRA-24 SRA-32 SRA-8-SS SRA-10-SS SRA-12-SS SRA-16-SS SRA-20-SS SRA-24-SS SRA-32-SS LSRA10 LSRA12 LSRA16 LSRA20 LSRA24 LSRA10CR LSRA12CR LSRA16CR LSRA20CR LSRA24CR XSRA-32 XSRA-48 XSRA-32-TU XSRA-48-TU SB4 SB6 SB8 SB10 SB12 SB16 SB20 SB24 SB32 ASB4 ASB6 ASB8 ASB12 ASB16 ASB24 FSB8 FSB12 FSB16 FSB20 WM8 WM16 WM24 WM32 WM48 WM64 5MM 8MM 10MM 12MM 15MM 16MM 20MM 25MM 30MM 40MM 50MM 60MM 80MM 12MMT1 16MMT1 20MMT1 25MMT1 30MMT1 40MMT1 12MMT2 16MMT2 20MMT2 25MMT2 30MMT2 40MMT2 12MMT3 16MMT3 20MMT3 25MMT3 30MMT3 40MMT3 5MMSS 8MMSS 10MMSS 12MMSS 16MMSS 20MMSS 25MMSS 30MMSS 40MMSS 50MMSS 60MMSS SRM12 SRM16 SRM20 SRM25 SRM30 SRM40 SRM12T1 SRM16T1 SRM20T1 SRM25T1 SRM30T1 SRM40T1 SRM12T2 SRM16T2 SRM20T2 SRM25T2 SRM30T2 SRM40T2 SRM12T3 SRM16T3 SRM20T3 SRM25T3 SRM30T3 SRM40T3 LSRM12 LSRM16 LSRM20 LSRM25 LSRM30 LSRM40 LSRM12T1 LSRM16T1 /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Structure: Rod End
Material: Stainless Steel
Load Direction: Radial Spherical Plain Bearing
Add Lubricant: Self-lubricating
Outer Structure: Outer Ring of Single-Slit
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Signs of Wear or Damage in Linear Bearings and Maintenance

Identifying signs of wear or damage in linear bearings is essential for maintaining their performance and preventing costly failures. Here are common signs of wear and damage and how to address them:

  • 1. Increased Friction:

If you notice increased resistance during linear motion, it could indicate that the bearing components are wearing out. This can lead to reduced efficiency and accuracy.

  • Solution: Regular Lubrication:

Ensure proper lubrication of the bearings to minimize friction and prevent premature wear. Follow manufacturer recommendations for lubrication intervals and types.

  • 2. Uneven Movement:

If the linear motion becomes uneven, jerky, or experiences sudden stops, it may be due to damaged bearing components.

  • Solution: Inspection and Replacement:

Inspect the bearings and associated components for any signs of damage, such as dents or cracks. Replace any damaged parts to restore smooth motion.

  • 3. Abnormal Noise:

Unusual noises during linear motion, such as grinding or clicking sounds, can indicate friction and wear within the bearings.

  • Solution: Lubrication and Inspection:

Lubricate the bearings as recommended and inspect for any foreign particles or debris that might be causing the noise. Clean and replace components if necessary.

  • 4. Increased Play or Clearance:

If there is noticeable play or excessive clearance in the linear system, it can affect precision and lead to inaccuracies.

  • Solution: Adjustment or Replacement:

Check for loose bolts, misalignment, or worn components causing the play. Make necessary adjustments or replace worn parts to restore proper fit and function.

  • 5. Reduced Performance:

If your linear system is no longer achieving the desired accuracy or performance, it could be due to worn bearings.

  • Solution: Maintenance and Replacement:

Regularly perform maintenance tasks, such as cleaning, lubrication, and inspection. If performance does not improve, consider replacing the bearings with new ones.

  • 6. Visible Damage:

Any visible signs of physical damage, such as deformation, corrosion, or cracks, require immediate attention.

  • Solution: Replacement:

If the damage is severe, replace the damaged bearings promptly to avoid further issues.

Regular maintenance practices, including proper lubrication, cleaning, and inspection, are crucial for preventing wear and damage in linear bearings. Addressing any signs of wear early can extend the lifespan of the bearings and ensure consistent performance in various applications.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China best Low Vibration Lmb 122026 Slide Ball Bearing Linear Bearing Lmb122026   with Best SalesChina best Low Vibration Lmb 122026 Slide Ball Bearing Linear Bearing Lmb122026   with Best Sales
editor by CX 2024-05-03

China Good quality Active-Power Industries Linear Motion Bearing China Manufacturers 81205/81206 Thrust Ball Bearing 51202 51146 51117 bearing air

Product Description

ACTIVE-POWER INDUSTRIES Linear Motion Bearing China Manufacturers 81205/81206 Thrust Ball Bearing 51202 51146 51117

Product Description

Thrust ball bearings are designed to withstand thrust loads during high-speed operation and consist of washer-shaped rings with raceway grooves for ball rolling. Because the ferrule is cushion-shaped, thrust ball bearings are divided into 2 types: flat base cushion type and self-aligning spherical cushion type. In addition, this kind of bearing can bear axial load, but cannot bear radial load.

Composition of thrust ball bearings: Thrust ball bearings are composed of 3 parts: seat ring, shaft ring, and steel ball cage assembly. The shaft ring matched with the shaft is called the seat ring matched with the shell.

Thrust ball bearing Type:
According to the force situation, it can be divided into one-way thrust ball bearing and two-way thrust ball bearing. One-way thrust ball bearings can bear a one-way axial load. Two-way thrust ball bearings can withstand two-way axial loads, in which the shaft ring is matched with the shaft. The mounting surface of the seat ring is a spherical bearing, which has self-aligning performance and can reduce the influence of installation errors. Thrust ball bearings cannot bear radial loads, and the limit speed is low.

 

Thrust ball bearing Features:

1. There are 2 types of one-way and two-way
2. In order to allow installation errors, whether it is one-way or two-way, you can choose the spherical self-aligning spherical seat cushion type or the spherical seat ring type.
3. High-quality steel – using ultra-clean steel that can extend bearing life by up to 80%
4. Advanced grease technology ― lubricant technology can extend the life of grease and improve the performance of bearings
5. High-grade steel balls – quiet and smooth when rotating at high speed
6. With the ferrule in the option, installation errors can be tolerated.
 

Product Parameters

Product Name Thrust Ball Bearing
Type Thrust Bearing
Structure Ball structure / Roller structure
Applicable Industries Machinery repair shop, automobile, agricultural machinery, mechanical equipment
Size 5mm-500mm
Accuracy Grade P0, P6, P5, P4
Origin ZheJiang , China
Material GCr15
Retainer Material Copper/Steel/Nylon
Service OEM / ODM
Certificate ISO9001:2008

Thrust Bearing
51100 51200 51304 51405
51101 51201 51305 51406
51102 51202 51306 51407
51103 51203 51307 51408
51104 51204 51308 51409
51105 51205 51309 51410
51106 51206 51310 51411
51107 51207 51311 51412
51108 51208 51312 51413
51109 51209 51313 51414
51110 51210 51314 51415
51111 51211 51315 51416
51112 51212 51316 51417
51113 51213 51317 51418
51114 51214 51318 51419
51115 51215 51320 51420
51116 51216 51322 51422
51117 51217 51324 51424
51118 51218 51326 51426
51120 51220 51328 958705
51122 51222 51330  
51124 51224 51332 81126
51126 51226 51334 81128
51128 51228 51336 81130
51130 51230   81134
51132 51232   81205
51134 51234   81206
51136 51236   81207
51138 51238   81208
51140 51240   81209
51144 51244   81210
  51248   81211
  51252   81212
  51256   81213
      81214
      81215
      81216
      81217
      81218
      81220
      81222

Company Profile

HangZhou Active-Power Industrial. is located in HangZhou, ZheJiang , China. The factory has been committed to the production research and development of bearings for more than 20 years. We support OEM and ODM bearing customization.

The main products are: Deep Groove Ball Bearing Taper Roller Bearing Tapered Roller Bearing Auto Wheel Hub Bearing Cylindrical Roller Bearing Spherical Roller Bearing Motor Bearing Needle Roller Bearing Angular Contact Ball Bearing.

FAQ

Q1:What is your Before-sales Service?
1>. Offer to bear related consultation about technology and application;

2>.Help customers with bearing choice, clearance configuration, product” life, and reliability analysis;

3>. Offer highly cost-effective and complete solution program according to site conditions;

4>. Offer localized program on introduced equipment to save running cost

Q2: What is your After-sales Service?
1>. Offer training about bearing installation and maintenance;

2>.Help customers with trouble diagnosis and failure analysis;

3>. Visit customers regularly and feedback on their rational suggestions and requirements to the company.

Q3: How about your company’s strength?
1>.FREE SAMPLES:
contact us by email or trade manager, we will send the free samples according to your request. 

2>. World-Class Bearing:
We provide our customers with all types of indigenous roller bearings of world-class quality.

3>.OEM or Non-Stand Bearings: 
Any requirement for Non-standard roller bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 

4>.Genuine products With Excellent Quality: 
The company has always proved the 100% quality products it provides with genuine intent.

5>. After-Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.

6>.Quick Delivery: 
The company provides just-in-time delivery with its streamlined supply chain.

7>.Cost Saving: 
We provide long-life, shock-resistant, and high-reliability roller bearings with excellent quality and better performance.
Resulting in increased cost savings.

Q4: What will we do if you are not satisfied with the product?
A: If have any abnormal, Please contact us at the first time, and we will immediately process

Q5: How long will you respond to our problems?
A: We will respond within 1 hour. 24 hours to solve your problem

Q6: Is optional lubrication provided?
A: We can offer a wide range of oils and greases for a variety of applications. Please contact our engineer for technical
assistance with any special requirements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Auto Bearing
Keywords: Thrust Ball Bearing
Bearing Material: Copper / Steel / Nylon
Precision Rating: P0 P5 P6
Bearing Clearance: C0 C3 C4 C5
Bore Size: 5mm-500mm
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Signs of Wear or Damage in Linear Bearings and Maintenance

Identifying signs of wear or damage in linear bearings is essential for maintaining their performance and preventing costly failures. Here are common signs of wear and damage and how to address them:

  • 1. Increased Friction:

If you notice increased resistance during linear motion, it could indicate that the bearing components are wearing out. This can lead to reduced efficiency and accuracy.

  • Solution: Regular Lubrication:

Ensure proper lubrication of the bearings to minimize friction and prevent premature wear. Follow manufacturer recommendations for lubrication intervals and types.

  • 2. Uneven Movement:

If the linear motion becomes uneven, jerky, or experiences sudden stops, it may be due to damaged bearing components.

  • Solution: Inspection and Replacement:

Inspect the bearings and associated components for any signs of damage, such as dents or cracks. Replace any damaged parts to restore smooth motion.

  • 3. Abnormal Noise:

Unusual noises during linear motion, such as grinding or clicking sounds, can indicate friction and wear within the bearings.

  • Solution: Lubrication and Inspection:

Lubricate the bearings as recommended and inspect for any foreign particles or debris that might be causing the noise. Clean and replace components if necessary.

  • 4. Increased Play or Clearance:

If there is noticeable play or excessive clearance in the linear system, it can affect precision and lead to inaccuracies.

  • Solution: Adjustment or Replacement:

Check for loose bolts, misalignment, or worn components causing the play. Make necessary adjustments or replace worn parts to restore proper fit and function.

  • 5. Reduced Performance:

If your linear system is no longer achieving the desired accuracy or performance, it could be due to worn bearings.

  • Solution: Maintenance and Replacement:

Regularly perform maintenance tasks, such as cleaning, lubrication, and inspection. If performance does not improve, consider replacing the bearings with new ones.

  • 6. Visible Damage:

Any visible signs of physical damage, such as deformation, corrosion, or cracks, require immediate attention.

  • Solution: Replacement:

If the damage is severe, replace the damaged bearings promptly to avoid further issues.

Regular maintenance practices, including proper lubrication, cleaning, and inspection, are crucial for preventing wear and damage in linear bearings. Addressing any signs of wear early can extend the lifespan of the bearings and ensure consistent performance in various applications.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China Good quality Active-Power Industries Linear Motion Bearing China Manufacturers 81205/81206 Thrust Ball Bearing 51202 51146 51117   bearing airChina Good quality Active-Power Industries Linear Motion Bearing China Manufacturers 81205/81206 Thrust Ball Bearing 51202 51146 51117   bearing air
editor by CX 2024-04-30

China Good quality Roller Bearings Distributor 22211cc/W33 Spherical Roller Bearing Ball Bearing/Roller Bearing/Linear Bearing/ Auto Bearing manufacturer

Product Description

Product Description

The aligning ball bearings are mainly used to bear radial loads. While bearing radial loads, they can also bear a small amount of axial loads, but generally cannot bear pure axial loads. Their limiting speed is lower than that of deep groove ball bearings. Bearings are mostly used on double support shafts that are easy to bend under the action of load, and in parts with double bearing holes that cannot guarantee strict coaxiality, but the relative inclination of the centerline of the inner ring and the centerline of the outer ring must not exceed 3 degrees.

 

Product Name spherical roller bearing 22211 CA/W33
Bearing Materials GCr15
Feature Low Noise, Low Vibration, High Precision, Long Life
Size 55*100*25mm
Precision Grade P6,P5,P0
Application Papermaking machinery, deceleration device, railway vehicle axis, rolling machine gear box bearing seat, rolling machine roller,
crusher, vibration screen, printing machinery, woodworking machinery, various industrial reducers, vertical band -seat stitching
bearing.

 

main bearing models              
1018 1210 105718H 1302 1317 2207 2222 2311
1026 1211 1230 1303 1318 2208 2224 2312
1571 1212 11204 1304 1319 2209 2226 2313
1571 1213 11205 1305 1320 2210 2228 2314
1096 1214 11206 1306 1321 2211 2300 2315
1200 1215 11207 1307 1322 2212 2301 2316
1201 1216 11208 1308 1324 2213 2302 2317
1202 1217 11209 1309 1326 2214 2303 2318
1203 1218 11210 1310 2200 2215 2304 2319
1204 1219 11211 1311 2201 2216 2305 2320
1205 1220 11212 1312 2202 2217 2306 2321
1206 1221 11213 1313 2203 2218 2307 2322
1207 1222 1035 1314 2204 2219 2308 2324
1208 1224 1300 1315 2205 2220 2309 2326
1209 1226 1301 1316 2206 2221 2310  

 

Detailed Photos

Company Profile

Our Advantages

Application

advantage:
 Long service life 
 High load carrying capacity
 Compact arrangements
 Accommodate misalignment
 Minimum maintenance
 Reduced operating costs
 Fewer unplanned stops
 Environmental sustainability
 High availability
 Technical support

FAQ

Q1 : Why choose us?
A1 : We have more than 30 years of professional experience in bearing industry, and serve many leader companies in bike industry with guarantee quality product. We sell variety of bearing brands and can also do OEM and ODM.

Q2: How about the quality of products in your company?
A2: We implement strict inspection on all bearing parts before the production and during the production process, all bearing meet ISO international standard.

Q3: How to choose a bearing?
A3: We have a professional engineer team to help you choose bearing and find appropriate solutions, contact us now!

Q4: How long is your delivery term?
A4: Our standard product delivery term is 3 to 7 days. A new product development cycle is between 60 to 90 days.
There are standing stock for regular types.

Q5: Do you provide samples?
A5: Yes, we provide samples, but shipping cost and tax pay by buyer.
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Aligning Bearings
Load Direction: No
Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Managing Contamination and Debris in Linear Bearings

Contamination and debris pose significant challenges to the proper functioning of linear bearings. However, various measures are employed to effectively manage these issues:

  • Preventive Sealing:

Linear bearings are often equipped with protective seals that act as barriers against contaminants. These seals prevent dust, dirt, and other particles from entering the bearing housing, thus reducing the risk of contamination.

  • Shielding:

Linear bearings can incorporate shields that offer an additional layer of protection against debris. Shields are designed to keep larger particles away from the bearing’s rolling elements, enhancing the bearing’s longevity.

  • Wipers and Scrapers:

Some linear bearings feature wipers or scrapers that actively remove debris from the bearing’s moving parts. These components help prevent the accumulation of contaminants that could compromise performance.

  • Regular Maintenance:

Periodic inspection and cleaning are crucial to maintaining the cleanliness of linear bearings. Routine maintenance procedures help identify and remove any foreign particles that may have entered the bearing housing.

  • Clean Environment:

Creating a clean operating environment is essential. In applications where contamination is a concern, steps are taken to minimize the presence of dust, dirt, and other pollutants in the vicinity of the linear bearings.

  • Proper Lubrication:

Lubrication not only reduces friction but also creates a barrier against contaminants. The lubricant can help prevent particles from adhering to bearing surfaces, facilitating their removal during maintenance.

  • Regular Inspections:

Frequent visual inspections can help identify early signs of contamination. Timely detection allows for prompt cleaning and maintenance, preventing further damage.

  • Appropriate Sealing Materials:

Using high-quality sealing materials that are resistant to wear and tear is essential. The right materials can effectively keep contaminants out while withstanding the operating conditions.

  • Choosing Suitable Environment:

Where possible, placing linear bearings in environments with lower levels of contamination or installing additional protective measures can help manage debris-related challenges.

By implementing these strategies, engineers and operators can effectively manage the challenges associated with contamination and debris, ensuring the optimal performance and longevity of linear bearings.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China Good quality Roller Bearings Distributor 22211cc/W33 Spherical Roller Bearing Ball Bearing/Roller Bearing/Linear Bearing/ Auto Bearing   manufacturerChina Good quality Roller Bearings Distributor 22211cc/W33 Spherical Roller Bearing Ball Bearing/Roller Bearing/Linear Bearing/ Auto Bearing   manufacturer
editor by CX 2024-04-26